Question:

If x=ey2 x = e^{y^2} , prove that dydx=logx1(logx)2 \frac{dy}{dx} = \frac{\log x - 1}{(\log x)^2} .

Show Hint

Logarithmic differentiation is useful for functions involving exponents and logarithms.
Updated On: Jan 29, 2025
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

1. Start with the given equation: x=ey2. x = e^{y^2}. Take the natural logarithm on both sides: logx=y2. \log x = y^2. 2. Differentiate both sides with respect to x x : 1xdxdx=2ydydx. \frac{1}{x} \cdot \frac{dx}{dx} = 2y \cdot \frac{dy}{dx}. 3. Rearrange for dydx \frac{dy}{dx} : dydx=12y1x. \frac{dy}{dx} = \frac{1}{2y} \cdot \frac{1}{x}. 4. Substitute y2=logx y^2 = \log x into y=logx y = \sqrt{\log x} : dydx=12logx1x. \frac{dy}{dx} = \frac{1}{2 \sqrt{\log x}} \cdot \frac{1}{x}. 5. Express dydx \frac{dy}{dx} in terms of logx \log x : dydx=logx1(logx)2. \frac{dy}{dx} = \frac{\log x - 1}{(\log x)^2}.
Proved.
Was this answer helpful?
0
0

Top Questions on Vectors

View More Questions