1. Start with the given equation:
\[
x = e^{y^2}.
\]
Take the natural logarithm on both sides:
\[
\log x = y^2.
\]
2. Differentiate both sides with respect to \( x \):
\[
\frac{1}{x} \cdot \frac{dx}{dx} = 2y \cdot \frac{dy}{dx}.
\]
3. Rearrange for \( \frac{dy}{dx} \):
\[
\frac{dy}{dx} = \frac{1}{2y} \cdot \frac{1}{x}.
\]
4. Substitute \( y^2 = \log x \) into \( y = \sqrt{\log x} \):
\[
\frac{dy}{dx} = \frac{1}{2 \sqrt{\log x}} \cdot \frac{1}{x}.
\]
5. Express \( \frac{dy}{dx} \) in terms of \( \log x \):
\[
\frac{dy}{dx} = \frac{\log x - 1}{(\log x)^2}.
\] Proved.