Step 1: Marginal PDF of \(Y\)
\[ f_Y(y) = \int_0^1 f(x,y)\,dx = \int_0^1 \tfrac{2}{3}(x+2y)\,dx \] Compute the integral: \[ f_Y(y) = \tfrac{2}{3}\left[ \frac{x^2}{2} + 2yx \right]_0^1 = \tfrac{2}{3}\left( \tfrac{1}{2} + 2y \right) = \tfrac{1+4y}{3}, \quad 0
Step 2: Conditional PDF of \(X\) given \(Y=y\)
\[ f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)} = \frac{\tfrac{2}{3}(x+2y)}{\tfrac{1+4y}{3}} = \frac{2(x+2y)}{1+4y}, \quad 0
Step 3: Conditional Expectation
By definition, \[ E[X|Y=y] = \int_0^1 x \, f_{X|Y}(x|y)\, dx. \] Substituting, \[ E[X|Y=y] = \int_0^1 x \cdot \frac{2(x+2y)}{1+4y}\, dx = \frac{2}{1+4y} \int_0^1 (x^2 + 2yx)\, dx. \] Evaluate the integrals: \[ \int_0^1 x^2 dx = \frac{1}{3}, \quad \int_0^1 2yx\,dx = y. \] So, \[ E[X|Y=y] = \frac{2}{1+4y}\left( \tfrac{1}{3} + y \right). \]
Step 4: Substitute \(y=\tfrac{1}{2}\)
\[ E[X|Y=\tfrac{1}{2}] = \frac{2}{1+4\cdot \tfrac{1}{2}}\left( \tfrac{1}{3} + \tfrac{1}{2} \right) = \frac{2}{3}\left( \tfrac{5}{6} \right). \] \[ E[X|Y=\tfrac{1}{2}] = \tfrac{5}{9}. \]
Final Answer:
\[ \boxed{\tfrac{5}{9}} \]
The 12 musical notes are given as \( C, C^\#, D, D^\#, E, F, F^\#, G, G^\#, A, A^\#, B \). Frequency of each note is \( \sqrt[12]{2} \) times the frequency of the previous note. If the frequency of the note C is 130.8 Hz, then the ratio of frequencies of notes F# and C is:
Here are two analogous groups, Group-I and Group-II, that list words in their decreasing order of intensity. Identify the missing word in Group-II.
Abuse \( \rightarrow \) Insult \( \rightarrow \) Ridicule
__________ \( \rightarrow \) Praise \( \rightarrow \) Appreciate