Given that:
$x + 9 = z = y + 1$
and
$x + y < z + 5$
Step 1: Express $x$ and $y$ in terms of $z$
From $x + 9 = z$, we get $x = z - 9$
From $z = y + 1$, we get $y = z - 1$
Step 2: Substitute into the inequality
$x + y < z + 5$
$\Rightarrow (z - 9) + (z - 1) < z + 5$
$\Rightarrow 2z - 10 < z + 5$
$\Rightarrow z - 10 < 5$
$\Rightarrow z < 15$
Step 3: Maximum possible value of $z$
Since $z < 15$, the maximum integer value of $z$ is $14$
Step 4: Find corresponding values of $x$ and $y$
$x = z - 9 = 14 - 9 = 5$
$y = z - 1 = 14 - 1 = 13$
Step 5: Compute the required expression
$2x + y = 2 \times 5 + 13 = 10 + 13 = \mathbf{23}$
Answer: (C): $23$
Given:
Step 1: Express \(x\) and \(y\) in terms of \(z\)
From Equation 1: \( x = z - 9 \)
From Equation 2: \( y = z - 1 \)
Step 2: Substitute into inequality Equation 3
\( x + y < z + 5 \)
\( \Rightarrow (z - 9) + (z - 1) < z + 5 \)
\( \Rightarrow 2z - 10 < z + 5 \)
\( \Rightarrow z < 15 \)
Step 3: Maximum possible integer value of \(z\)
Since \(z < 15\), the maximum possible integer value of \(z\) is 14.
Step 4: Calculate \(2x + y\)
We need to maximize \( 2x + y \)
Substitute \(x = z - 9\) and \(y = z - 1\):
\( 2x + y = 2(z - 9) + (z - 1) = 2z - 18 + z - 1 = 3z - 19 \)
Now, put \( z = 14 \):
\( 3 \times 14 - 19 = 42 - 19 = \mathbf{23} \)
Final Answer: Option (C): 23
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is:
When $10^{100}$ is divided by 7, the remainder is ?