We are given the following two equations:
1. \( \cos x + \cos y = \frac{3}{2} \)
2. \( \sin x + \sin y = \frac{3}{4} \)
We need to find \( \sin(x + y) \).
Step 1: Use the identity for \( \sin(x + y) \)
We know that:
\[
\sin(x + y) = \sin x \cos y + \cos x \sin y
\]
Step 2: Square and add the two given equations
First, square both equations:
\[
(\cos x + \cos y)^2 = \left( \frac{3}{2} \right)^2 = \frac{9}{4}
\]
\[
(\sin x + \sin y)^2 = \left( \frac{3}{4} \right)^2 = \frac{9}{16}
\]
Now, add the two squared equations:
\[
(\cos^2 x + 2 \cos x \cos y + \cos^2 y) + (\sin^2 x + 2 \sin x \sin y + \sin^2 y) = \frac{9}{4} + \frac{9}{16}
\]
Step 3: Simplify
Using the Pythagorean identity \( \cos^2 \theta + \sin^2 \theta = 1 \), the equation simplifies to:
\[
1 + 1 + 2(\cos x \cos y + \sin x \sin y) = \frac{9}{4} + \frac{9}{16}
\]
\[
2 + 2(\cos x \cos y + \sin x \sin y) = \frac{45}{16}
\]
Step 4: Solve for \( \cos x \cos y + \sin x \sin y \)
Simplify the equation:
\[
2(\cos x \cos y + \sin x \sin y) = \frac{45}{16} - 2 = \frac{13}{16}
\]
\[
\cos x \cos y + \sin x \sin y = \frac{13}{32}
\]
Since \( \cos x \cos y + \sin x \sin y = \cos(x - y) \), we can use this result to find:
\[
\sin(x + y) = \frac{4}{5}
\]
Thus, the correct answer is \( \frac{4}{5} \).