Question:

If $\vec{a} + \vec{b} + \vec{c} = \vec{0}$ such that $|\vec{a}| = 3$, $|\vec{b}| = 5$, $|\vec{c}| = 7$, then find the angle between $\vec{a}$ and $\vec{b}$.

Show Hint

When three vectors add to zero, the triangle rule applies: the sum of any two vectors is the negative of the third. You can use the cosine law to find angles between vectors.
Updated On: Jun 21, 2025
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

Given that $\vec{a} + \vec{b} + \vec{c} = \vec{0}$, we can write: \[ \vec{a} + \vec{b} = -\vec{c} \Rightarrow (\vec{a} + \vec{b})^2 = (-\vec{c})^2 = |\vec{c}|^2 = 49 \] Now compute $(\vec{a} + \vec{b})^2$: \[ (\vec{a} + \vec{b})^2 = \vec{a} \cdot \vec{a} + \vec{b} \cdot \vec{b} + 2\vec{a} \cdot \vec{b} = |\vec{a}|^2 + |\vec{b}|^2 + 2 |\vec{a}||\vec{b}| \cos\theta \] Substitute the values: \[ (3)^2 + (5)^2 + 2(3)(5)\cos\theta = 49 \Rightarrow 9 + 25 + 30\cos\theta = 49 \Rightarrow 34 + 30\cos\theta = 49 \Rightarrow 30\cos\theta = 15 \Rightarrow \cos\theta = \frac{1}{2} \Rightarrow \theta = 60^\circ \]
Was this answer helpful?
0
0

Questions Asked in CBSE CLASS XII exam

View More Questions