Question:

If \(\vec{a}, \vec{b}, \vec{c}\) are unit vectors and \(\vec{a} \perp \vec{b}\), and \((\vec{a} - \vec{c}) \cdot (\vec{b} + \vec{c}) = 0\), and \(\vec{c} = l\vec{a} + m\vec{b} + n(\vec{a} \times \vec{b})\), then \(n^2 =\)

Show Hint

Break vectors into orthogonal basis and use scalar product conditions to find unknown coefficients.
Updated On: Jun 4, 2025
  • \(l^2 + m^2\)
  • \(-\dfrac{2}{m}\)
  • \(2l - 2m\)
  • \(\dfrac{l}{m} + l + m\)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

From \(\vec{c} = l\vec{a} + m\vec{b} + n(\vec{a} \times \vec{b})\), compute: \[ (\vec{a} - \vec{c}) \cdot (\vec{b} + \vec{c}) = 0 \Rightarrow \text{Dot both expressions and simplify using } \vec{a} \cdot \vec{b} = 0, |\vec{a}| = |\vec{b}| = 1. \] Final result gives: \[ n^2 = -\dfrac{2}{m} \]
Was this answer helpful?
0
0

Top Questions on Geometry and Vectors

View More Questions