Since \( \vec{a} \) is collinear with \( \vec{b} \), we can write:
\[
\vec{a} = \lambda \vec{b}
\]
Then,
\[
\vec{a} \cdot \vec{b} = (\lambda \vec{b}) \cdot \vec{b} = \lambda |\vec{b}|^2
\]
Given:
\[
\vec{a} \cdot \vec{b} = 27,\quad \vec{b} = 3\hat{i} + 6\hat{j} + 6\hat{k}
\Rightarrow |\vec{b}|^2 = 3^2 + 6^2 + 6^2 = 9 + 36 + 36 = 81
\]
So,
\[
\lambda \cdot 81 = 27 \Rightarrow \lambda = \frac{1}{3}
\Rightarrow \vec{a} = \frac{1}{3} \vec{b}
\Rightarrow |\vec{a}| = \frac{1}{3} |\vec{b}| = \frac{1}{3} \cdot \sqrt{81} = \frac{1}{3} \cdot 9 = \boxed{3}
\]