\( \frac{1}{\sqrt{155}} (7\hat{i} + 9\hat{j} + 5\hat{k}) \)
\( \frac{1}{\sqrt{155}} (7\hat{i} + 9\hat{j} - 5\hat{k}) \)
\( \frac{1}{\sqrt{155}} (7\hat{i} + 9\hat{j} + 5\hat{k}) \)
We need to find a unit vector along a non-zero vector \( \vec{a} \), given that its projections on three other vectors, \( \vec{b}_1 = 2\hat{i} - \hat{j} + 2\hat{k} \), \( \vec{b}_2 = \hat{i} + 2\hat{j} - 2\hat{k} \), and \( \vec{b}_3 = \hat{k} \), are equal.
The projection of a vector \( \vec{a} \) onto another non-zero vector \( \vec{b} \) is given by the formula:
\[ \text{Projection of } \vec{a} \text{ on } \vec{b} = \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|} \]We will equate the projections of \( \vec{a} \) on the three given vectors to form a system of linear equations and solve for the components of \( \vec{a} \).
Step 1: Define the vector \( \vec{a} \) and the given vectors.
Let the unknown vector be \( \vec{a} = x\hat{i} + y\hat{j} + z\hat{k} \). The given vectors are:
\[ \vec{b}_1 = 2\hat{i} - \hat{j} + 2\hat{k} \] \[ \vec{b}_2 = \hat{i} + 2\hat{j} - 2\hat{k} \] \[ \vec{b}_3 = \hat{k} \]Step 2: Calculate the magnitudes of the given vectors.
\[ |\vec{b}_1| = \sqrt{2^2 + (-1)^2 + 2^2} = \sqrt{4 + 1 + 4} = \sqrt{9} = 3 \] \[ |\vec{b}_2| = \sqrt{1^2 + 2^2 + (-2)^2} = \sqrt{1 + 4 + 4} = \sqrt{9} = 3 \] \[ |\vec{b}_3| = \sqrt{0^2 + 0^2 + 1^2} = 1 \]Step 3: Set up the equality for the projections.
According to the problem, the projections are equal:
\[ \frac{\vec{a} \cdot \vec{b}_1}{|\vec{b}_1|} = \frac{\vec{a} \cdot \vec{b}_2}{|\vec{b}_2|} = \frac{\vec{a} \cdot \vec{b}_3}{|\vec{b}_3|} \]Substituting the dot products and magnitudes:
\[ \frac{(x\hat{i} + y\hat{j} + z\hat{k}) \cdot (2\hat{i} - \hat{j} + 2\hat{k})}{3} = \frac{(x\hat{i} + y\hat{j} + z\hat{k}) \cdot (\hat{i} + 2\hat{j} - 2\hat{k})}{3} = \frac{(x\hat{i} + y\hat{j} + z\hat{k}) \cdot (\hat{k})}{1} \] \[ \frac{2x - y + 2z}{3} = \frac{x + 2y - 2z}{3} = z \]Step 4: Form and solve the system of linear equations.
From the equality, we can create two separate equations:
1) \( \frac{2x - y + 2z}{3} = z \implies 2x - y + 2z = 3z \implies 2x - y = z \quad \cdots(I) \)
2) \( \frac{x + 2y - 2z}{3} = z \implies x + 2y - 2z = 3z \implies x + 2y = 5z \quad \cdots(II) \)
To solve for \(x\) and \(y\) in terms of \(z\), we can multiply equation (I) by 2 and add it to equation (II):
\[ 2(2x - y) + (x + 2y) = 2(z) + 5z \] \[ 4x - 2y + x + 2y = 7z \] \[ 5x = 7z \implies x = \frac{7}{5}z \]Now, substitute the value of \(x\) back into equation (I):
\[ 2\left(\frac{7}{5}z\right) - y = z \] \[ \frac{14}{5}z - y = z \implies y = \frac{14}{5}z - z = \frac{9}{5}z \]Step 5: Determine the vector \( \vec{a} \) and find its unit vector.
Substitute the expressions for \(x\) and \(y\) back into \( \vec{a} \):
\[ \vec{a} = \left(\frac{7}{5}z\right)\hat{i} + \left(\frac{9}{5}z\right)\hat{j} + z\hat{k} \]We can factor out \( \frac{z}{5} \):
\[ \vec{a} = \frac{z}{5} (7\hat{i} + 9\hat{j} + 5\hat{k}) \]The unit vector \( \hat{a} \) is \( \frac{\vec{a}}{|\vec{a}|} \). The scalar factor \( \frac{z}{5} \) will cancel out, so the direction of \( \vec{a} \) is determined by the vector \( 7\hat{i} + 9\hat{j} + 5\hat{k} \).
\[ \hat{a} = \frac{7\hat{i} + 9\hat{j} + 5\hat{k}}{|7\hat{i} + 9\hat{j} + 5\hat{k}|} \]First, calculate the magnitude of the direction vector:
\[ |7\hat{i} + 9\hat{j} + 5\hat{k}| = \sqrt{7^2 + 9^2 + 5^2} = \sqrt{49 + 81 + 25} = \sqrt{155} \]Therefore, the unit vector along \( \vec{a} \) is:
\( \hat{a} = \frac{7\hat{i} + 9\hat{j} + 5\hat{k}}{\sqrt{155}} \)
Two light beams fall on a transparent material block at point 1 and 2 with angle \( \theta_1 \) and \( \theta_2 \), respectively, as shown in the figure. After refraction, the beams intersect at point 3 which is exactly on the interface at the other end of the block. Given: the distance between 1 and 2, \( d = \frac{4}{3} \) cm and \( \theta_1 = \theta_2 = \cos^{-1} \left( \frac{n_2}{2n_1} \right) \), where \( n_2 \) is the refractive index of the block and \( n_1 \) is the refractive index of the outside medium, then the thickness of the block is …….. cm.

Let \( y^2 = 12x \) be the parabola and \( S \) its focus. Let \( PQ \) be a focal chord of the parabola such that \( (SP)(SQ) = \frac{147}{4} \). Let \( C \) be the circle described by taking \( PQ \) as a diameter. If the equation of the circle \( C \) is: \[ 64x^2 + 64y^2 - \alpha x - 64\sqrt{3}y = \beta, \] then \( \beta - \alpha \) is equal to: