\( \frac{1}{\sqrt{155}} (7\hat{i} + 9\hat{j} + 5\hat{k}) \)
\( \frac{1}{\sqrt{155}} (7\hat{i} + 9\hat{j} - 5\hat{k}) \)
\( \frac{1}{\sqrt{155}} (7\hat{i} + 9\hat{j} + 5\hat{k}) \)
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: