\( \frac{1}{\sqrt{155}} (7\hat{i} + 9\hat{j} + 5\hat{k}) \)
\( \frac{1}{\sqrt{155}} (7\hat{i} + 9\hat{j} - 5\hat{k}) \)
\( \frac{1}{\sqrt{155}} (7\hat{i} + 9\hat{j} + 5\hat{k}) \)
We need to find a unit vector along a non-zero vector \( \vec{a} \), given that its projections on three other vectors, \( \vec{b}_1 = 2\hat{i} - \hat{j} + 2\hat{k} \), \( \vec{b}_2 = \hat{i} + 2\hat{j} - 2\hat{k} \), and \( \vec{b}_3 = \hat{k} \), are equal.
The projection of a vector \( \vec{a} \) onto another non-zero vector \( \vec{b} \) is given by the formula:
\[ \text{Projection of } \vec{a} \text{ on } \vec{b} = \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|} \]We will equate the projections of \( \vec{a} \) on the three given vectors to form a system of linear equations and solve for the components of \( \vec{a} \).
Step 1: Define the vector \( \vec{a} \) and the given vectors.
Let the unknown vector be \( \vec{a} = x\hat{i} + y\hat{j} + z\hat{k} \). The given vectors are:
\[ \vec{b}_1 = 2\hat{i} - \hat{j} + 2\hat{k} \] \[ \vec{b}_2 = \hat{i} + 2\hat{j} - 2\hat{k} \] \[ \vec{b}_3 = \hat{k} \]Step 2: Calculate the magnitudes of the given vectors.
\[ |\vec{b}_1| = \sqrt{2^2 + (-1)^2 + 2^2} = \sqrt{4 + 1 + 4} = \sqrt{9} = 3 \] \[ |\vec{b}_2| = \sqrt{1^2 + 2^2 + (-2)^2} = \sqrt{1 + 4 + 4} = \sqrt{9} = 3 \] \[ |\vec{b}_3| = \sqrt{0^2 + 0^2 + 1^2} = 1 \]Step 3: Set up the equality for the projections.
According to the problem, the projections are equal:
\[ \frac{\vec{a} \cdot \vec{b}_1}{|\vec{b}_1|} = \frac{\vec{a} \cdot \vec{b}_2}{|\vec{b}_2|} = \frac{\vec{a} \cdot \vec{b}_3}{|\vec{b}_3|} \]Substituting the dot products and magnitudes:
\[ \frac{(x\hat{i} + y\hat{j} + z\hat{k}) \cdot (2\hat{i} - \hat{j} + 2\hat{k})}{3} = \frac{(x\hat{i} + y\hat{j} + z\hat{k}) \cdot (\hat{i} + 2\hat{j} - 2\hat{k})}{3} = \frac{(x\hat{i} + y\hat{j} + z\hat{k}) \cdot (\hat{k})}{1} \] \[ \frac{2x - y + 2z}{3} = \frac{x + 2y - 2z}{3} = z \]Step 4: Form and solve the system of linear equations.
From the equality, we can create two separate equations:
1) \( \frac{2x - y + 2z}{3} = z \implies 2x - y + 2z = 3z \implies 2x - y = z \quad \cdots(I) \)
2) \( \frac{x + 2y - 2z}{3} = z \implies x + 2y - 2z = 3z \implies x + 2y = 5z \quad \cdots(II) \)
To solve for \(x\) and \(y\) in terms of \(z\), we can multiply equation (I) by 2 and add it to equation (II):
\[ 2(2x - y) + (x + 2y) = 2(z) + 5z \] \[ 4x - 2y + x + 2y = 7z \] \[ 5x = 7z \implies x = \frac{7}{5}z \]Now, substitute the value of \(x\) back into equation (I):
\[ 2\left(\frac{7}{5}z\right) - y = z \] \[ \frac{14}{5}z - y = z \implies y = \frac{14}{5}z - z = \frac{9}{5}z \]Step 5: Determine the vector \( \vec{a} \) and find its unit vector.
Substitute the expressions for \(x\) and \(y\) back into \( \vec{a} \):
\[ \vec{a} = \left(\frac{7}{5}z\right)\hat{i} + \left(\frac{9}{5}z\right)\hat{j} + z\hat{k} \]We can factor out \( \frac{z}{5} \):
\[ \vec{a} = \frac{z}{5} (7\hat{i} + 9\hat{j} + 5\hat{k}) \]The unit vector \( \hat{a} \) is \( \frac{\vec{a}}{|\vec{a}|} \). The scalar factor \( \frac{z}{5} \) will cancel out, so the direction of \( \vec{a} \) is determined by the vector \( 7\hat{i} + 9\hat{j} + 5\hat{k} \).
\[ \hat{a} = \frac{7\hat{i} + 9\hat{j} + 5\hat{k}}{|7\hat{i} + 9\hat{j} + 5\hat{k}|} \]First, calculate the magnitude of the direction vector:
\[ |7\hat{i} + 9\hat{j} + 5\hat{k}| = \sqrt{7^2 + 9^2 + 5^2} = \sqrt{49 + 81 + 25} = \sqrt{155} \]Therefore, the unit vector along \( \vec{a} \) is:
\( \hat{a} = \frac{7\hat{i} + 9\hat{j} + 5\hat{k}}{\sqrt{155}} \)
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).
