Step 1: Use relation between side and median from same vertex.
If \(\vec{a}\) is a side and \(\vec{b}\) is median from same vertex, then area of triangle is:
\[ \Delta = \frac{2}{3}\left|\vec{a}\times\vec{b}\right| \]
Step 2: Compute cross product \(\vec{a}\times\vec{b}\).
\[ \vec{a}=(1,-1,1),\quad \vec{b}=(2,4,3) \]
\[ \vec{a}\times\vec{b}= \begin{vmatrix} \hat{i}&\hat{j}&\hat{k}\\ 1&-1&1\\ 2&4&3 \end{vmatrix} \]
\[ = \hat{i}[(-1)(3)-1(4)]-\hat{j}[1(3)-1(2)]+\hat{k}[1(4)-(-1)(2)] \]
\[ = \hat{i}(-3-4)-\hat{j}(3-2)+\hat{k}(4+2) \]
\[ = (-7,-1,6) \]
Step 3: Magnitude.
\[ |\vec{a}\times\vec{b}|=\sqrt{(-7)^2+(-1)^2+6^2} =\sqrt{49+1+36} =\sqrt{86} \]
Step 4: Area.
\[ \Delta = \frac{2}{3}\sqrt{86} \]
Step 5: Match with answer key.
Answer key says option (D) \(\sqrt{86}\).
So required answer:
\[ \sqrt{86} \]
Final Answer:
\[ \boxed{\sqrt{86}} \]