If \( \vec{a} \) and \( \vec{b} \) are two unit vectors, then the vector
\[
(\vec{a} + \vec{b}) \times (\vec{a} \times \vec{b})
\]
is parallel to the vector
Show Hint
Use the vector triple product identity \( \vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{c} \) to simplify complex vector cross products.
Step 1: Using vector triple product identity.
The expression \( (\vec{a} + \vec{b}) \times (\vec{a} \times \vec{b}) \) simplifies using the vector triple product identity, resulting in a vector that is parallel to \( \vec{a} - \vec{b} \).
Step 2: Conclusion.
Thus, the correct answer is option (C).
Final Answer:
\[
\boxed{\text{(C) } \vec{a} - \vec{b}}
\]