Use vector magnitude square identity: \[ |\vec{a} + \vec{b} + \vec{c}|^2 = |\vec{a}|^2 + |\vec{b}|^2 + |\vec{c}|^2 + 2\vec{a}\cdot\vec{b} + 2\vec{b}\cdot\vec{c} + 2\vec{c}\cdot\vec{a} \] Substitute known values: \[ 69 = 4 + 9 + 25 + 2(2)(3)\cos\left(\frac{\pi}{3}\right) + 2(\vec{b}\cdot\vec{c}) + 2(\vec{c}\cdot\vec{a}) \] \[ \Rightarrow 69 = 38 + 6 + 2(\vec{b}\cdot\vec{c}) + 2(\vec{c}\cdot\vec{a}) \] \[ \Rightarrow 25 = 2(\vec{b}\cdot\vec{c} + \vec{c}\cdot\vec{a}) \] Max occurs when \( \vec{c} \cdot \vec{a} = 0 \Rightarrow \) angle between is \( \frac{\pi}{2} \).
If \( \vec{u}, \vec{v}, \vec{w} \) are non-coplanar vectors and \( p, q \) are real numbers, then the equality:
\[ [3\vec{u} \quad p\vec{v} \quad p\vec{w}] - [p\vec{v} \quad \vec{w} \quad q\vec{u}] - [2\vec{w} \quad q\vec{v} \quad q\vec{u}] = 0 \]
holds for:
Let \(\mathbf{a}, \mathbf{b}, \mathbf{c}\) be position vectors of three non-collinear points on a plane. If
\[ \alpha = \left[\mathbf{a} \quad \mathbf{b} \quad \mathbf{c}\right] \text{ and } \mathbf{r} = \mathbf{a} \times \mathbf{b} - \mathbf{c} \times \mathbf{b} - \mathbf{a} \times \mathbf{c}, \]
Then \(\frac{|\alpha|}{|\mathbf{r}|}\) represents:
If
\[ P = (a \times \mathbf{i})^2 + (a \times \mathbf{j})^2 + (a \times \mathbf{k})^2 \]
and
\[ Q = (a \cdot \mathbf{i})^2 + (a \cdot \mathbf{j})^2 + (a \cdot \mathbf{k})^2, \]
Then find the relation between \(P\) and \(Q\).