Question:

If \( \theta \) is the angle between two vectors \( \vec{a} \) and \( \vec{b} \) such that \( |\vec{a}| = 7 \), \( |\vec{b}| = 1 \) and \( |\vec{a} \times \vec{b}|^2 = k^2 - (\vec{a} \cdot \vec{b})^2 \), then the values of \( k \) and \( \theta \) are:

Show Hint

Whenever an angle \( \theta \) disappears from the final simplified equation, it means \( \theta \) is arbitrary and not uniquely determined by the given conditions.
Updated On: Apr 28, 2025
  • \( k=1, \theta=45^\circ \)
  • \( k=7, \theta=60^\circ \)
  • \( k=49, \theta=90^\circ \)
  • \( k=7 \) and \( \theta \) is arbitrary
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation


Step 1: Understand the given information.
We are given:
\( |\vec{a}| = 7 \)
\( |\vec{b}| = 1 \)
\( |\vec{a} \times \vec{b}|^2 = k^2 - (\vec{a} \cdot \vec{b})^2 \)

Step 2: Express known quantities.
We know: \[ |\vec{a} \times \vec{b}| = |\vec{a}||\vec{b}|\sin\theta = 7\sin\theta \] thus: \[ |\vec{a} \times \vec{b}|^2 = 49\sin^2\theta \] Also: \[ \vec{a} \cdot \vec{b} = |\vec{a}||\vec{b}|\cos\theta = 7\cos\theta \quad \Rightarrow \quad (\vec{a} \cdot \vec{b})^2 = 49\cos^2\theta \] Thus, the given condition becomes: \[ 49\sin^2\theta = k^2 - 49\cos^2\theta \]
Step 3: Simplify.
Use identity: \[ \sin^2\theta + \cos^2\theta = 1 \quad \Rightarrow \quad \sin^2\theta = 1 - \cos^2\theta \] Thus: \[ 49(1 - \cos^2\theta) = k^2 - 49\cos^2\theta \] Expanding: \[ 49 - 49\cos^2\theta = k^2 - 49\cos^2\theta \] Now cancel \( -49\cos^2\theta \) from both sides: \[ 49 = k^2 \quad \Rightarrow \quad k = 7 \quad (\text{taking positive value}) \]
Step 4: Analyze \( \theta \).
Notice carefully — \( \theta \) does not appear anymore after solving for \( k \).
\( \theta \) is not determined uniquely.
\( \theta \) can be arbitrary (any value).
Thus, \( \theta \) can take any value and \( k = 7 \).
Step 5: Final Conclusion.
Thus, \( k=7 \) and \( \theta \) is arbitrary.
Was this answer helpful?
0
0

Top Questions on Vectors

View More Questions