Question:

If $\sin(\pi \cos \theta) = \cos(\pi \sin \theta),$ then $\sin 2 \theta$ equals

Updated On: May 12, 2024
  • $\pm \frac{3}{4}$
  • $\pm \sqrt{2}$
  • $\pm \frac{1}{\sqrt{3}}$
  • $\pm \frac{1}{2}$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

$\sin\left(\pi \cos \theta\right) =\cos\left(\pi \sin\theta\right) $
$ \Rightarrow\cos \left(\frac{\pi}{2} -\pi \cos \theta\right) =\cos \left(\pi \sin \theta\right) $
$ \Rightarrow \frac{\pi}{2} - \pi \cos \theta -\pm \pi \sin \theta $
$ \Rightarrow \frac{\pi }{2} =\pi \cos \theta \pm \pi \sin \theta$
$ \frac{1 }{2} = \cos \theta \pm \sin \theta$
Squaring both sides, we get
$ \frac{1}{4}= \cos^{2} \theta + \sin^{2} \theta \pm 2 \sin \theta \cos \theta $
$\Rightarrow \frac{1}{4} = 1 \pm 2 \sin \theta \cos \theta $
$\Rightarrow \frac{1}{4} - 1 \pm \sin 2\theta$
$ \Rightarrow - \frac{3}{4} = \pm \sin 2\theta \Rightarrow \sin 2\theta \pm \frac{3}{4}$
Was this answer helpful?
0
0

Concepts Used:

Applications of Integrals

There are distinct applications of integrals, out of which some are as follows:

In Maths

Integrals are used to find:

  • The center of mass (centroid) of an area having curved sides
  • The area between two curves and the area under a curve
  • The curve's average value

In Physics

Integrals are used to find:

  • Centre of gravity
  • Mass and momentum of inertia of vehicles, satellites, and a tower
  • The center of mass
  • The velocity and the trajectory of a satellite at the time of placing it in orbit
  • Thrust