The volume of a sphere:
\[
V = \frac{4}{3} \pi r^3
\]
Differentiating,
\[
\frac{dV}{dt} = 4\pi r^2 \frac{dr}{dt}
\]
Given \( \frac{dV}{dt} = 12 \) and \( r = \frac{12}{2} = 6 \),
\[
12 = 4\pi (6)^2 \frac{dr}{dt}
\]
\[
\frac{dr}{dt} = \frac{12}{144\pi} = \frac{1}{12\pi}
\]
The surface area of a sphere:
\[
S = 4\pi r^2
\]
Differentiating,
\[
\frac{dS}{dt} = 8\pi r \frac{dr}{dt}
\]
Substituting \( r = 6 \) and \( \frac{dr}{dt} = \frac{1}{12\pi} \),
\[
\frac{dS}{dt} = 8\pi (6) \times \frac{1}{12\pi}
\]
\[
= \frac{48\pi}{12\pi} = 4
\]
Thus, the correct answer is \( 4 \).