For three vectors to be coplanar, their scalar triple product must be zero. That is, the determinant of the matrix formed by the components of the vectors must be zero.
\(\begin{vmatrix} 2 & -3 & 4 \\ 2 & 1 & -1 \\ \lambda & -1 & 2 \end{vmatrix} = 0\)
Expanding the determinant:
\(2(1 \cdot 2 - (-1)(-1)) - (-3)(2 \cdot 2 - (-1)(\lambda)) + 4(2(-1) - 1(\lambda)) = 0\)
\(2(2 - 1) + 3(4 + \lambda) + 4(-2 - \lambda) = 0\)
\(2(1) + 12 + 3\lambda - 8 - 4\lambda = 0\)
\(2 + 12 - 8 + 3\lambda - 4\lambda = 0\)
\(6 - \lambda = 0\)
\(\lambda = 6\)
Therefore, the value of \(\lambda\) is 6.
Thus, the correct option is (A) 6.
For vectors to be coplanar, their scalar triple product must be zero. The scalar triple product is given by:
$$ \begin{vmatrix} 2 & -3 & 4 \\ 2 & 1 & -1 \\ \lambda & -1 & 2 \end{vmatrix} = 0. $$
Expanding the determinant:
$$ 2(2-(-1)) - (-3)(4+\lambda) + 4(-2-\lambda) = 0. $$
Simplify each term:
$$ 2(1) + 3(4+\lambda) + 4(-2-\lambda) = 0. $$ $$ 2 + 12 + 3\lambda - 8 - 4\lambda = 0. $$ $$ 6 - \lambda = 0. $$ $$ \lambda = 6. $$
Match the following:
In the following, \( [x] \) denotes the greatest integer less than or equal to \( x \). 
Choose the correct answer from the options given below:
For x < 0:
f(x) = ex + ax
For x ≥ 0:
f(x) = b(x - 1)2