The system of equations is:
\begin{align} \label{eq:q5_1} \alpha + 2\beta + 3\gamma &= 4
3\alpha + \beta + \gamma &= 3 \label{eq:q5_2}
\alpha + 3\beta + 3\gamma &= 2 \label{eq:q5_3} \end{align}
We want to find the value of \(3\alpha + \gamma\).
From equation \eqref{eq:q5_2}, we can express \(3\alpha + \gamma\) as:
\[ 3\alpha + \gamma = 3 - \beta ().
\]
To find \(\beta\), subtract equation \eqref{eq:q5_1} from equation \eqref{eq:q5_3}:
\[ (\alpha + 3\beta + 3\gamma) - (\alpha + 2\beta + 3\gamma) = 2 - 4 \]
\[ \beta = -2.
\]
Substitute \(\beta = -2\) into equation ():
\[ 3\alpha + \gamma = 3 - (-2) = 3 + 2 = 5.
\]
Now, we evaluate the given options using \(\beta = -2\):
% Option
(A) Option (1): \(\beta = -2\).
% Option
(B) Option (2): \(2\beta = 2(-2) = -4\).
% Option
(C) Option (3): \(1-2\beta = 1 - 2(-2) = 1 - (-4) = 1+4 = 5\).
% Option
(D) Option (4): \(2\beta+1 = 2(-2)+1 = -4+1 = -3\).
Since \(3\alpha + \gamma = 5\), and option (3) also evaluates to 5, option (3) is the correct answer.
\[ \boxed{1-2\beta} \]