Step 1: Compute the transpose of matrix \( A \).
The transpose of \( A \), denoted as \( A \), is obtained by swapping the off-diagonal elements:
\[
A =
\begin{bmatrix}
\sin\alpha & \cos\alpha \\
-\cos\alpha & \sin\alpha
\end{bmatrix}.
\]
Step 2: Add \( A \) and \( A \).
\[
A + A =
\begin{bmatrix}
\sin\alpha & -\cos\alpha \\
\cos\alpha & \sin\alpha
\end{bmatrix}
+
\begin{bmatrix}
\sin\alpha & \cos\alpha \\
-\cos\alpha & \sin\alpha
\end{bmatrix}.
\]
Adding corresponding elements:
\[
A + A =
\begin{bmatrix}
\sin\alpha + \sin\alpha & -\cos\alpha + \cos\alpha \\
\cos\alpha - \cos\alpha & \sin\alpha + \sin\alpha
\end{bmatrix}.
\]
Simplifying:
\[
A + A =
\begin{bmatrix}
2\sin\alpha & 0 \\
0 & 2\sin\alpha
\end{bmatrix}.
\]
Step 3: Equating to the identity matrix.
The identity matrix is:
\[
I =
\begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix}.
\]
Thus, equating:
\[
\begin{bmatrix}
2\sin\alpha & 0 \\
0 & 2\sin\alpha
\end{bmatrix}
=
\begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix}.
\]
From which:
\[
2\sin\alpha = 1 \Rightarrow \sin\alpha = \frac{1}{2}.
\]
Step 4: Finding \( \cos\alpha \).
Using the Pythagorean identity:
\[
\sin^2\alpha + \cos^2\alpha = 1.
\]
Substituting \( \sin\alpha = \frac{1}{2} \):
\[
\left( \frac{1}{2} \right)^2 + \cos^2\alpha = 1.
\]
\[
\frac{1}{4} + \cos^2\alpha = 1.
\]
\[
\cos^2\alpha = \frac{3}{4}.
\]
\[
\cos\alpha = \frac{\sqrt{3}}{2}.
\]
Conclusion: The correct answer is \( \mathbf{\frac{\sqrt{3}}{2}} \).