The given integral is:
\( \int_{-0.15}^{0.15} |100x^2 - 1| \, dx = 2 \int_{0}^{0.15} |100x^2 - 1| \, dx \)
Step 1: Critical Point
Solve \( 100x^2 - 1 = 0 \):
\( x^2 = \frac{1}{100} \Rightarrow x = 0.1 \)
The integral splits into two parts:
\( I = 2 \left[ \int_{0}^{0.1} (1 - 100x^2) \, dx + \int_{0.1}^{0.15} (100x^2 - 1) \, dx \right] \)
Step 2: Evaluate Each Integral
1. For \( \int_{0}^{0.1} (1 - 100x^2) \, dx \):
\( \int (1 - 100x^2) \, dx = x - \frac{100}{3}x^3 \)
Evaluate:
\( \left[ x - \frac{100}{3}x^3 \right]_0^{0.1} = 0.1 - \frac{100}{3}(0.1)^3 \)
Simplify:
\( = 0.1 - \frac{100}{3} \cdot 0.001 = 0.1 - \frac{0.1}{3} = \frac{0.2}{3} \)
2. For \( \int_{0.1}^{0.15} (100x^2 - 1) \, dx \):
\( \int (100x^2 - 1) \, dx = \frac{100}{3}x^3 - x \)
Evaluate:
\( \left[ \frac{100}{3}x^3 - x \right]_{0.1}^{0.15} = \left( \frac{100}{3}(0.15)^3 - 0.15 \right) - \left( \frac{100}{3}(0.1)^3 - 0.1 \right) \)
Simplify:
\( = \left( \frac{100}{3} \cdot 0.003375 - 0.15 \right) - \left( \frac{100}{3} \cdot 0.001 - 0.1 \right) \)
\( = (0.3375 - 0.15) - (0.1 - 0.1) = \frac{0.3375}{3} - 0.15 + 0.1 \)
Step 3: Combine Results
Combine both parts:
\( I = 2 \left[ \frac{0.2}{3} + \left( \frac{0.3375}{3} - 0.15 + 0.1 \right) \right] \)
Simplify:
\( I = 2 \left[ \frac{0.2}{3} + \frac{0.3375}{3} - 0.05 \right] \)
\( I = 2 \left[ \frac{0.5375}{3} - 0.05 \right] \)
Convert to a single fraction:
\( I = 2 \left[ \frac{1.075}{3} - \frac{0.15}{3} \right] = 2 \cdot \frac{0.925}{3} \)
Simplify further:
\( I = \frac{1.85}{3} = \frac{1850}{3000} \)
From the problem:
\( k = 575 \) (as \( \frac{1850}{3000} = \frac{575}{1000} \) and \( k = 575 \)).
Final Answer: \( k = 575 \)
Definite integral is an operation on functions which approximates the sum of the values (of the function) weighted by the length (or measure) of the intervals for which the function takes that value.
Definite integrals - Important Formulae Handbook
A real valued function being evaluated (integrated) over the closed interval [a, b] is written as :
\(\int_{a}^{b}f(x)dx\)
Definite integrals have a lot of applications. Its main application is that it is used to find out the area under the curve of a function, as shown below: