Step 1: Given curve
\[
x^3 y^2 + \frac{x^2}{y} = 5
\]
Step 2: Condition for tangent parallel to X-axis
Tangent parallel to X-axis means slope of tangent, \(\frac{dy}{dx} = 0\).
Step 3: Differentiate implicitly
Differentiate both sides with respect to \(x\):
\[
\frac{d}{dx} \left( x^3 y^2 \right) + \frac{d}{dx} \left( \frac{x^2}{y} \right) = \frac{d}{dx} (5) = 0
\]
Use product and quotient rules:
\[
\frac{d}{dx}(x^3 y^2) = 3x^2 y^2 + x^3 \cdot 2y \frac{dy}{dx} = 3x^2 y^2 + 2x^3 y \frac{dy}{dx}
\]
\[
\frac{d}{dx} \left(\frac{x^2}{y}\right) = \frac{(2x) y - x^2 \frac{dy}{dx}}{y^2} = \frac{2xy - x^2 \frac{dy}{dx}}{y^2}
\]
So the equation becomes:
\[
3x^2 y^2 + 2x^3 y \frac{dy}{dx} + \frac{2xy - x^2 \frac{dy}{dx}}{y^2} = 0
\]
Multiply through by \(y^2\) to clear denominator:
\[
3x^2 y^4 + 2x^3 y^3 \frac{dy}{dx} + 2 x y - x^2 \frac{dy}{dx} = 0
\]
Group terms with \(\frac{dy}{dx}\):
\[
\left( 2x^3 y^3 - x^2 \right) \frac{dy}{dx} = -3x^2 y^4 - 2 x y
\]
Step 4: Expression for \(\frac{dy}{dx}\)
\[
\frac{dy}{dx} = \frac{-3x^2 y^4 - 2 x y}{2 x^3 y^3 - x^2}
\]
Step 5: Set \(\frac{dy}{dx} = 0\) (tangent parallel to X-axis)
\[
-3x^2 y^4 - 2 x y = 0
\]
Divide both sides by \(x y\) (assuming \(x \neq 0, y \neq 0\)):
\[
-3 x y^3 - 2 = 0 \implies 3 x y^3 = -2 \implies x = -\frac{2}{3 y^3}
\]
Step 6: Substitute back into original curve equation
\[
x^3 y^2 + \frac{x^2}{y} = 5
\]
Substitute \(x = -\frac{2}{3 y^3}\):
\[
\left(-\frac{2}{3 y^3}\right)^3 y^2 + \frac{\left(-\frac{2}{3 y^3}\right)^2}{y} = 5
\]
Calculate each term:
\[
x^3 y^2 = \left(-\frac{2}{3 y^3}\right)^3 y^2 = -\frac{8}{27 y^9} y^2 = -\frac{8}{27 y^7}
\]
\[
\frac{x^2}{y} = \frac{\left(-\frac{2}{3 y^3}\right)^2}{y} = \frac{\frac{4}{9 y^6}}{y} = \frac{4}{9 y^7}
\]
Sum:
\[
-\frac{8}{27 y^7} + \frac{4}{9 y^7} = 5
\]
Multiply both sides by \(27 y^7\):
\[
-8 + 12 = 135 y^7
\]
\[
4 = 135 y^7
\]
\[
y^7 = \frac{4}{135}
\]
\[
y = \sqrt[7]{\frac{4}{135}} = \sqrt[3]{\frac{1}{3}} \quad (\text{approximation, considering cube root form})
\]
Step 7: Find \(x\)
\[
x = -\frac{2}{3 y^3} = -\frac{2}{3 \times \frac{1}{3}} = -2
\]
Final answer:
\[
\boxed{\left(-2, \frac{1}{\sqrt[3]{3}}\right)}
\]