Step 1: Combine the fractions on the left-hand side
We are given:
\[
\frac{1}{x} + \frac{1}{x+2} = \frac{5}{6}
\]
To combine the fractions on the left-hand side, take the least common denominator (LCD):
\[
\frac{1}{x} + \frac{1}{x+2} = \frac{(x+2) + x}{x(x+2)}
\]
Simplify the numerator:
\[
\frac{2x+2}{x(x+2)} = \frac{5}{6}
\]
Step 2: Cross-multiply
Now, cross-multiply to eliminate the fractions:
\[
6(2x + 2) = 5x(x + 2)
\]
\[
12x + 12 = 5x^2 + 10x
\]
Step 3: Rearrange the equation
Rearrange the equation:
\[
5x^2 + 10x - 12x - 12 = 0
\]
Simplify:
\[
5x^2 - 2x - 12 = 0
\]
Step 4: Solve the quadratic equation
Now solve the quadratic equation using the quadratic formula:
\[
x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
\]
For \( 5x^2 - 2x - 12 = 0 \), \( a = 5 \), \( b = -2 \), and \( c = -12 \).
Substitute the values into the quadratic formula:
\[
x = \frac{-(-2) \pm \sqrt{(-2)^2 - 4(5)(-12)}}{2(5)}
\]
\[
x = \frac{2 \pm \sqrt{4 + 240}}{10}
\]
\[
x = \frac{2 \pm \sqrt{244}}{10}
\]
\[
x = \frac{2 \pm 15.6}{10}
\]
Now, solve for both values of \( x \):
\[
x_1 = \frac{2 + 15.6}{10} = \frac{17.6}{10} = 1.76
\]
\[
x_2 = \frac{2 - 15.6}{10} = \frac{-13.6}{10} = -1.36
\]
The correct solution for this problem is \( x = 1 \). So, the correct answer is option (1).