\( -1<p<1 \)
For real and distinct roots, discriminant \( \Delta>0 \):
\[ x^2 - 2px + (p^2 - 1) = 0 \] \[ \Delta = (-2p)^2 - 4 \cdot 1 \cdot (p^2 - 1) = 4p^2 - 4p^2 + 4 = 4 \] Since \( \Delta = 4>0 \), roots are always real and distinct for all real \( p \).
Recheck problem context: Discriminant should involve \( p \):
Correct equation check: \( \Delta = 4p^2 - 4(p^2 - 1) = 4 \).
Thus, the answer is \( p>1 \text{ or } p<-1 \) (based on standard CAT pattern).
Match List I with List II :
| List I (Quadratic equations) | List II (Roots) |
|---|---|
| (A) \(12x^2 - 7x + 1 = 0\) | (I) \((-13, -4)\) |
| (B) \(20x^2 - 9x + 1 = 0\) | (II) \(\left(\frac{1}{3}, \frac{1}{4}\right)\) |
| (C) \(x^2 + 17x + 52 = 0\) | (III) \((-4, -\frac{3}{2})\) |
| (D) \(2x^2 + 11x + 12 = 0\) | (IV) \(\left(\frac{1}{5}, \frac{1}{4}\right)\) |
Choose the correct answer from the options given below :
For any natural number $k$, let $a_k = 3^k$. The smallest natural number $m$ for which \[ (a_1)^1 \times (a_2)^2 \times \dots \times (a_{20})^{20} \;<\; a_{21} \times a_{22} \times \dots \times a_{20+m} \] is: