Focal Length Ratio in Different Media
Given the refractive indices of water (\( n_w \)) and glass (\( n_g \)):
\[ n_w = \frac{4}{3}, \quad n_g = \frac{3}{2} \]
The relationship between the focal lengths in air (\( f_a \)) and water (\( f_w \)) is derived from the lensmaker's equation:
\[ f_a (n_g - 1) = f_w \left( \frac{n_g}{n_w} - 1 \right) \]
Solving for the ratio \( \frac{f_w}{f_a} \):
\[ \begin{align*} \frac{f_w}{f_a} &= \frac{n_g - 1}{\frac{n_g}{n_w} - 1} \\ &= \frac{\frac{3}{2} - 1}{\frac{3/2}{4/3} - 1} \\ &= \frac{\frac{1}{2}}{\frac{9}{8} - 1} \\ &= \frac{\frac{1}{2}}{\frac{1}{8}} \\ &= 4 \end{align*} \]
Therefore, the ratio of the focal lengths is: \[ \frac{f_w}{f_a} = \frac{4}{1} \]