To solve the problem, we need to find the ratio of volumes of a right circular cylinder and a cone given the ratios of their radii and heights.
1. Volume Formulas:
The volume of a cylinder is given by:
$ V_{\text{cylinder}} = \pi r_1^2 h_1 $
The volume of a cone is given by:
$ V_{\text{cone}} = \frac{1}{3} \pi r_2^2 h_2 $
2. Given Ratios:
Ratio of radii: $r_1 : r_2 = 2 : 3$
Ratio of heights: $h_1 : h_2 = 3 : 4$
3. Expressing Volumes in Terms of Ratios:
Let $r_1 = 2$, $r_2 = 3$, $h_1 = 3$, $h_2 = 4$
Then:
$V_{\text{cylinder}} = \pi (2)^2 (3) = \pi \cdot 4 \cdot 3 = 12\pi$
$V_{\text{cone}} = \frac{1}{3} \pi (3)^2 (4) = \frac{1}{3} \pi \cdot 9 \cdot 4 = 12\pi$
4. Finding the Ratio:
$ \frac{V_{\text{cylinder}}}{V_{\text{cone}}} = \frac{12\pi}{12\pi} = 1 : 1 $
Final Answer:
The ratio of their volumes is $1 : 1$