We are given that the rank of matrix \( A \) is 2, i.e., only two rows are linearly independent. Apply row operations to simplify.
Start with:
\[
A = \begin{bmatrix} 1 & 2 & 1 & -1\\ -1 & 2 & 3 & 5 \\ 0 & 1 & k & k \end{bmatrix}
\]
Add Row 1 and Row 2:
\[
R_2 \rightarrow R_2 + R_1 = [0, 4, 4, 4]
\]
New matrix:
\[
\begin{bmatrix}
1 & 2 & 1 & -1 \\
0 & 4 & 4 & 4 \\
0 & 1 & k & k
\end{bmatrix}
\]
Now eliminate the second row using third:
\[
R_3 \rightarrow R_3 - \frac{1}{4}R_2 = [0, 0, k - 1, k - 1]
\]
For the matrix to have rank 2, the third row must be all zeros:
\[
k - 1 = 0 \Rightarrow k = 1
\]
Now find a quadratic for which \( k = 1 \) is a root. Option (2) is:
\[
x^2 + x - 2 = 0 \Rightarrow (x - 1)(x + 2) = 0
\Rightarrow x = 1, -2
\]
So, \( k = 1 \) is a valid root.