Step 1: Find the eccentricity of the ellipse
For the ellipse:
\(
\frac{x^2}{16} + \frac{y^2}{b^2} = 1.
\)
The eccentricity of an ellipse is given by:
\(
e = \sqrt{1 - \frac{b^2}{a^2}}.
\)
Here, \( a^2 = 16 \), so:
\(
e_1 = \sqrt{1 - \frac{b^2}{16}}.
\)
Step 2: Find the eccentricity of the hyperbola
For the hyperbola:
\(
\frac{x^2}{9} - \frac{y^2}{16} = 1.
\)
The eccentricity of a hyperbola is given by:
\(
e = \sqrt{1 + \frac{b^2}{a^2}}.
\)
Here, \( a^2 = 9 \), and \( b^2 = 16 \), so:
\(
e_2 = \sqrt{1 + \frac{16}{9}} = \sqrt{\frac{25}{9}} = \frac{5}{3}.
\)
Step 3: Using the given condition
We are given that:
\(
e_1 \times e_2 = 1.
\)
Substituting the values:
\(
\sqrt{1 - \frac{b^2}{16}} \times \frac{5}{3} = 1.
\)
Squaring both sides:
\(
\left(1 - \frac{b^2}{16}\right) \times \frac{25}{9} = 1.
\)
\(
\frac{25}{9} - \frac{25b^2}{144} = 1.
\)
Multiplying by 144 to clear fractions:
\(
400 - 25b^2 = 144.
\)
\(
25b^2 = 256.
\)
\(
b^2 = \frac{144}{25}.
\)