Electric field intensity
\(E=\frac{V}{d}\)
\(\frac{0.6}{6 \times 10^{-6}}\)
\(= 1 \times 10^5\)
So, the answer is 1.
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:
Electric Field is the electric force experienced by a unit charge.
The electric force is calculated using the coulomb's law, whose formula is:
\(F=k\dfrac{|q_{1}q_{2}|}{r^{2}}\)
While substituting q2 as 1, electric field becomes:
\(E=k\dfrac{|q_{1}|}{r^{2}}\)
SI unit of Electric Field is V/m (Volt per meter).