Electric field intensity
\(E=\frac{V}{d}\)
\(\frac{0.6}{6 \times 10^{-6}}\)
\(= 1 \times 10^5\)
So, the answer is 1.
A metallic ring is uniformly charged as shown in the figure. AC and BD are two mutually perpendicular diameters. Electric field due to arc AB to O is ‘E’ magnitude. What would be the magnitude of electric field at ‘O’ due to arc ABC?
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is:
Electric Field is the electric force experienced by a unit charge.
The electric force is calculated using the coulomb's law, whose formula is:
\(F=k\dfrac{|q_{1}q_{2}|}{r^{2}}\)
While substituting q2 as 1, electric field becomes:
\(E=k\dfrac{|q_{1}|}{r^{2}}\)
SI unit of Electric Field is V/m (Volt per meter).