We are given the following:
- The position vector of point \( A \) is \( \vec{A} = \vec{a} + 2\vec{b} \).
- The point \( A \) divides the line segment \( AB \) in the ratio 2 : 3.
We need to find the position vector of point \( B \).
Step 1: Use the section formula
The section formula for the position vector of a point dividing a line segment \( AB \) in the ratio \( m : n \) is:
\[
\vec{P} = \frac{n \vec{A} + m \vec{B}}{m + n}
\]
Here, point \( A \) divides \( AB \) in the ratio 2 : 3, so:
\[
\vec{A} = \frac{3 \vec{B} + 2 \vec{A}}{2 + 3}
\]
Simplifying this formula, we get:
\[
\vec{A} = \frac{3 \vec{B} + 2 \vec{A}}{5}
\]
Now, multiply through by 5:
\[
5 \vec{A} = 3 \vec{B} + 2 \vec{A}
\]
Now, subtract \( 2 \vec{A} \) from both sides:
\[
5 \vec{A} - 2 \vec{A} = 3 \vec{B}
\]
\[
3 \vec{A} = 3 \vec{B}
\]
Finally, divide both sides by 3:
\[
\vec{A} = \vec{B}
\]
Thus the correct answer is \( \boxed{4} \).