Step 1: Recognize that the vectors are coplanar if the volume of the parallelepiped they form is zero. This volume is calculated using the scalar triple product, which is defined as: \[ \mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = 0 \] This equation ensures the three vectors \(\mathbf{a}, \mathbf{b}, \mathbf{c}\) lie in the same plane.
Step 2: Define the vectors \(\mathbf{a}, \mathbf{b}, \mathbf{c}\) based on the given position vectors: \[ \mathbf{a} = \mathbf{r}_2 - \mathbf{r}_1 = (3i + 2j - 5k) - (-i + 4j - 4k) = 4i - 2j - k \] \[ \mathbf{b} = \mathbf{r}_3 - \mathbf{r}_1 = (-3i + 8j - 5k) - (-i + 4j - 4k) = -2i + 4j - k \] \[ \mathbf{c} = \mathbf{r}_4 - \mathbf{r}_1 = (-3i + 2j + \lambda k) - (-i + 4j - 4k) = -2i - 2j + (\lambda + 4)k \] Step 3: Calculate the cross product \(\mathbf{b} \times \mathbf{c}\). This is done by computing the determinant of the matrix formed by the unit vectors \( \mathbf{i}, \mathbf{j}, \mathbf{k} \) and the components of \( \mathbf{b} \) and \( \mathbf{c} \): \[ \mathbf{b} \times \mathbf{c} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -2 & 4 & -1 \\ -2 & -2 & \lambda + 4 \end{vmatrix} \] This determinant expands to: \[ \mathbf{b} \times \mathbf{c} = \mathbf{i} \left( 4(\lambda + 4) - (-1)(-2) \right) - \mathbf{j} \left( -2(\lambda + 4) - (-1)(-2) \right) + \mathbf{k} \left( -2(-2) - 4(-2) \right) \] \[ \mathbf{b} \times \mathbf{c} = \mathbf{i} \left( 4\lambda + 16 - 2 \right) - \mathbf{j} \left( -2\lambda - 8 - 2 \right) + \mathbf{k} \left( 4 + 8 \right) \] \[ \mathbf{b} \times \mathbf{c} = \mathbf{i} \left( 4\lambda + 14 \right) - \mathbf{j} \left( -2\lambda - 10 \right) + \mathbf{k} \left( 12 \right) \] \[ \mathbf{b} \times \mathbf{c} = (4\lambda + 14) \mathbf{i} + (2\lambda + 10) \mathbf{j} + 12 \mathbf{k} \] Step 4: Compute the dot product of \(\mathbf{a}\) with \(\mathbf{b} \times \mathbf{c}\): \[ \mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = (4i - 2j - k) \cdot \left( (4\lambda + 14) \mathbf{i} + (2\lambda + 10) \mathbf{j} + 12 \mathbf{k} \right) \] \[ = 4(4\lambda + 14) - 2(2\lambda + 10) - 1(12) \] \[ = 16\lambda + 56 - 4\lambda - 20 - 12 \] \[ = 12\lambda + 24 \] Set this equal to 0 for the vectors to be coplanar: \[ 12\lambda + 24 = 0 \] \[ 12\lambda = -24 \] \[ \lambda = -2 \]
If \( \vec{u}, \vec{v}, \vec{w} \) are non-coplanar vectors and \( p, q \) are real numbers, then the equality:
\[ [3\vec{u} \quad p\vec{v} \quad p\vec{w}] - [p\vec{v} \quad \vec{w} \quad q\vec{u}] - [2\vec{w} \quad q\vec{v} \quad q\vec{u}] = 0 \]
holds for:
Let \(\mathbf{a}, \mathbf{b}, \mathbf{c}\) be position vectors of three non-collinear points on a plane. If
\[ \alpha = \left[\mathbf{a} \quad \mathbf{b} \quad \mathbf{c}\right] \text{ and } \mathbf{r} = \mathbf{a} \times \mathbf{b} - \mathbf{c} \times \mathbf{b} - \mathbf{a} \times \mathbf{c}, \]
Then \(\frac{|\alpha|}{|\mathbf{r}|}\) represents:
If
\[ P = (a \times \mathbf{i})^2 + (a \times \mathbf{j})^2 + (a \times \mathbf{k})^2 \]
and
\[ Q = (a \cdot \mathbf{i})^2 + (a \cdot \mathbf{j})^2 + (a \cdot \mathbf{k})^2, \]
Then find the relation between \(P\) and \(Q\).
Given vectors \(\mathbf{a} = \mathbf{i} + \mathbf{j} - 2\mathbf{k}\), \(\mathbf{b} = \mathbf{i} + 2\mathbf{j} - 3\mathbf{k}\), \(\mathbf{c} = 2\mathbf{i} - \mathbf{j} + \mathbf{k}\), and \(\mathbf{r}\) such that
\[ \mathbf{r} \cdot \mathbf{a} = 0, \\ \mathbf{r} \cdot \mathbf{c} = 3, \\ [\mathbf{r} \quad \mathbf{a} \quad \mathbf{b}] = 0, \]
Then find \(|\mathbf{r}|\).