If the points A, B, C, D with position vectors \(\vec{i} + \vec{j} - \vec{k}, -\vec{i} + 2\vec{k}, \vec{i} - 2\vec{j} + \vec{k}, 2\vec{i} + \vec{j} + \vec{k}\) form a tetrahedron, then angle between faces ABC and ABD is
Show Hint
Use cross products to get normals to planes and dot product to find angle between them.
Find normals to faces ABC and ABD using cross product:
\[
\text{Normal to ABC: } \vec{AB} \times \vec{AC}, \quad \text{Normal to ABD: } \vec{AB} \times \vec{AD}
\]
Use dot product between normals to find angle:
\[
\cos \theta = \dfrac{\vec{n_1} \cdot \vec{n_2}}{|\vec{n_1}||\vec{n_2}|}
\]
Substitute and simplify to get \(\cos^{-1}\left(\dfrac{-4}{\sqrt{29}}\right)\).