We are given three points on the plane: \[ A(1, 0, 0), \quad B(0, 3, 0), \quad C(0, 0, 2). \] To find the normal vector \( \mathbf{n} \) to the plane, we need two vectors on the plane. These can be obtained by subtracting the coordinates of the points: \[ \mathbf{AB} = B - A = (0 - 1, 3 - 0, 0 - 0) = (-1, 3, 0), \] \[ \mathbf{AC} = C - A = (0 - 1, 0 - 0, 2 - 0) = (-1, 0, 2). \] Next, we find the cross product \( \mathbf{n} = \mathbf{AB} \times \mathbf{AC} \) to get a vector perpendicular to both \( \mathbf{AB} \) and \( \mathbf{AC} \). The cross product is computed as follows: \[ \mathbf{n} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -1 & 3 & 0 \\ -1 & 0 & 2 \end{vmatrix}. \] Expanding this determinant: \[ \mathbf{n} = \hat{i} \begin{vmatrix} 3 & 0 \\ 0 & 2 \end{vmatrix} - \hat{j} \begin{vmatrix} -1 & 0 \\ -1 & 2 \end{vmatrix} + \hat{k} \begin{vmatrix} -1 & 3 \\ -1 & 0 \end{vmatrix} \] \[ \mathbf{n} = \hat{i} (3 \cdot 2 - 0 \cdot 0) - \hat{j} (-1 \cdot 2 - (-1) \cdot 0) + \hat{k} (-1 \cdot 0 - (-1) \cdot 3) \] \[ \mathbf{n} = \hat{i} (6) - \hat{j} (-2) + \hat{k} (3) \] \[ \mathbf{n} = 6 \hat{i} + 2 \hat{j} + 3 \hat{k}. \] ### Step 2: Normalize the normal vector To find the unit normal vector, we divide \( \mathbf{n} \) by its magnitude. The magnitude of \( \mathbf{n} \) is: \[ |\mathbf{n}| = \sqrt{6^2 + 2^2 + 3^2} = \sqrt{36 + 4 + 9} = \sqrt{49} = 7. \] Thus, the unit normal vector is: \[ \hat{n} = \frac{1}{7} (6 \hat{i} + 2 \hat{j} + 3 \hat{k}). \]
The correct option is (E) : \(\frac{1}{7}(6\hat{i}+2\hat{j}+3\hat{k})\)
Let the points be A(1, 0, 0), B(0, 3, 0), and C(0, 0, 2). We can find two vectors lying in the plane by taking the differences between the points:
\(\bar{AB} = (0 - 1, 3 - 0, 0 - 0) = (-1, 3, 0) = -\hat{i} + 3\hat{j} + 0\hat{k}\)
\(\bar{AC} = (0 - 1, 0 - 0, 2 - 0) = (-1, 0, 2) = -\hat{i} + 0\hat{j} + 2\hat{k}\)
The normal vector to the plane is given by the cross product of these two vectors:
\(\bar{n} = \bar{AB} \times \bar{AC} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -1 & 3 & 0 \\ -1 & 0 & 2 \end{vmatrix} = \hat{i}(3(2) - 0(0)) - \hat{j}((-1)(2) - 0(-1)) + \hat{k}((-1)(0) - 3(-1)) = 6\hat{i} + 2\hat{j} + 3\hat{k}\)
So, \(\bar{n} = 6\hat{i} + 2\hat{j} + 3\hat{k} = (6, 2, 3)\).
To find the unit normal vector, we divide by the magnitude of \(\bar{n}\):
\(|\bar{n}| = \sqrt{6^2 + 2^2 + 3^2} = \sqrt{36 + 4 + 9} = \sqrt{49} = 7\)
Therefore, the unit normal vector is:
\(\hat{n} = \frac{\bar{n}}{|\bar{n}|} = \frac{6\hat{i} + 2\hat{j} + 3\hat{k}}{7} = \frac{1}{7}(6\hat{i} + 2\hat{j} + 3\hat{k})\)
Let the lines $L_1 : \vec r = \hat i + 2\hat j + 3\hat k + \lambda(2\hat i + 3\hat j + 4\hat k)$, $\lambda \in \mathbb{R}$ and $L_2 : \vec r = (4\hat i + \hat j) + \mu(5\hat i + + 2\hat j + \hat k)$, $\mu \in \mathbb{R}$ intersect at the point $R$. Let $P$ and $Q$ be the points lying on lines $L_1$ and $L_2$, respectively, such that $|PR|=\sqrt{29}$ and $|PQ|=\sqrt{\frac{47}{3}}$. If the point $P$ lies in the first octant, then $27(QR)^2$ is equal to}