To determine the locus of the point $P$ that denotes the complex number $z = x + iy$ in the Argand plane such that the expression $\frac{z - (2 - i)}{z + (1 + 2i)}$ is purely imaginary, we start by expressing the condition mathematically:
The expression $\frac{z - (2 - i)}{z + (1 + 2i)}$ being purely imaginary means its real part is zero. Let $z = x + iy$, then:
Substitute $z$: $$\frac{(x + iy) - (2 - i)}{(x + iy) + (1 + 2i)} = \frac{(x - 2) + (y + 1)i}{(x + 1) + (y + 2)i}$$
Let $u = x - 2$, $v = y + 1$, $a = x + 1$, $b = y + 2$, we rewrite the fraction as: $$\frac{u + vi}{a + bi}$$
Multiply numerator and denominator by the conjugate of the denominator $(a - bi)$:
$$\frac{(u + vi)(a - bi)}{(a + bi)(a - bi)} = \frac{(ua + vb) + (va - ub)i}{a^2 + b^2}$$
This fraction is purely imaginary if the real part is zero; hence:
$$ua + vb = 0 \Rightarrow (x-2)(x+1) + (y+1)(y+2) = 0$$
Expanding and simplifying this gives:
$$(x^2 - x - 2) + (y^2 + 3y + 2) = 0$$
Combine like terms: $$x^2 + y^2 - x + 3y = 0$$
This represents the equation of a circle in the form of $x^2 + y^2 + Dx + Ey + F = 0$. By completing the square, we can see this defines a circle. To check if the point $(-1, -2)$ is on the circle, substitute into the circle's equation:
Plug $x = -1$, $y = -2$ into $x^2 + y^2 - x + 3y = 0$:
$1 + 4 + 1 - 6 = 0$ which simplifies to $0 \neq 0$, confirming the point $(-1, -2)$ is not on this circle.
The centre of the circle is determined by transforming $x^2 + y^2 - x + 3y = 0$ to standard form by completing the square, showing its center lies on the line $x + y + 1 = 0$. Thus, the locus is a circle not containing $(-1, -2)$ with its centre on this line.
Let \( z \) satisfy \( |z| = 1, \ z = 1 - \overline{z} \text{ and } \operatorname{Im}(z)>0 \)
Then consider:
Statement-I: \( z \) is a real number
Statement-II: Principal argument of \( z \) is \( \dfrac{\pi}{3} \)
Then:
If \( z \) and \( \omega \) are two non-zero complex numbers such that \( |z\omega| = 1 \) and
\[ \arg(z) - \arg(\omega) = \frac{\pi}{2}, \]
Then the value of \( \overline{z\omega} \) is:
If \( x^a y^b = e^m, \)
and
\[ x^c y^d = e^n, \]
and
\[ \Delta_1 = \begin{vmatrix} m & b \\ n & d \\ \end{vmatrix}, \quad \Delta_2 = \begin{vmatrix} a & m \\ c & n \\ \end{vmatrix}, \quad \Delta_3 = \begin{vmatrix} a & b \\ c & d \\ \end{vmatrix} \]
Then the values of \( x \) and \( y \) respectively (where \( e \) is the base of the natural logarithm) are:
\( z_1, z_2, z_3 \) represent the vertices A, B, C of a triangle ABC respectively in the Argand plane. If
\[ |z_1 - z_2| = \sqrt{25 - 12 \sqrt{3}}, \] \[ \left|\frac{z_1 - z_3}{z_2 - z_3}\right| = \frac{3}{4}, \] \[ \text{and } \angle ACB = 30^\circ, \]
Then the area (in sq. units) of that triangle is:
If \( \vec{u}, \vec{v}, \vec{w} \) are non-coplanar vectors and \( p, q \) are real numbers, then the equality:
\[ [3\vec{u} \quad p\vec{v} \quad p\vec{w}] - [p\vec{v} \quad \vec{w} \quad q\vec{u}] - [2\vec{w} \quad q\vec{v} \quad q\vec{u}] = 0 \]
holds for:
Statement-I: In the interval \( [0, 2\pi] \), the number of common solutions of the equations
\[ 2\sin^2\theta - \cos 2\theta = 0 \]
and
\[ 2\cos^2\theta - 3\sin\theta = 0 \]
is two.
Statement-II: The number of solutions of
\[ 2\cos^2\theta - 3\sin\theta = 0 \]
in \( [0, \pi] \) is two.
If \( A \) and \( B \) are acute angles satisfying
\[ 3\cos^2 A + 2\cos^2 B = 4 \]
and
\[ \frac{3 \sin A}{\sin B} = \frac{2 \cos B}{\cos A}, \]
Then \( A + 2B = \ ? \)
If
\[ \sin \theta + 2 \cos \theta = 1 \]
and
\[ \theta \text{ lies in the 4\textsuperscript{th} quadrant (not on coordinate axes), then } 7 \cos \theta + 6 \sin \theta =\ ? \]