Let \( P = (2, \lambda) \)
Circle 1: \( x^2 + y^2 = 13 \Rightarrow 2^2 + \lambda^2<13 \Rightarrow 4 + \lambda^2<13 \Rightarrow \lambda^2<9 \Rightarrow -3<\lambda<3 \)
Circle 2: \( x^2 + y^2 + x - 2y = 14 \)
Substitute \( x = 2 \), \( y = \lambda \):
\[
4 + \lambda^2 + 2 - 2\lambda<14 \Rightarrow \lambda^2 - 2\lambda<8
\Rightarrow \lambda^2 - 2\lambda - 8<0
\Rightarrow (\lambda - 4)(\lambda + 2)<0
\Rightarrow \lambda \in (-2, 4)
\]
Combine both conditions:
\[
\lambda \in (-3, 3) \cap (-2, 4) = (-2, 3)
\]
Since boundaries are not strict, closed interval:
\[
\lambda \in [-2, 3]
\]