For a particle executing Simple Harmonic Motion (SHM), let A be the amplitude and \( \omega \) be the angular frequency.
Maximum velocity \( v_{max} = A\omega \).
Maximum acceleration \( a_{max} = A\omega^2 \).
Given:
\( v_{max} = 5 \, \text{m s}^{-1} \implies A\omega = 5 \cdots (1) \)
\( a_{max} = 10 \, \text{m s}^{-2} \implies A\omega^2 = 10 \cdots (2) \)
Divide equation (2) by equation (1):
\[ \frac{A\omega^2}{A\omega} = \frac{10}{5} \]
\[ \omega = 2 \, \text{rad s}^{-1} \]
The time period of oscillation \( T \) is related to \( \omega \) by \( T = \frac{2\pi}{\omega} \).
\[ T = \frac{2\pi}{2} = \pi \, \text{s} \]
This matches option (1).