Given
Mass of the elevator system = 1400 kg
Velocity (\(V\)) = \(3 m/s^-1\)
Frictional force (\(f\)) = 2000 N
The net force on the elevator is zero, as it is moving with uniform speed. So, the upward force (tension \(T\)) must balance the downward forces, which are the gravitational force (\(Mg\)) and the frictional force. 1. Tension in the string: \[ T = Mg + f = 1400 \times 10 + 2000 = 14000 + 2000 = 16000 \, \text{N} \] 2. The maximum power used by the motor is given by: \[ \text{Maximum Power} = F \times V = T \times V = 16000 \times 3 = 48000 \, \text{W} = 48 \, \text{kW} \] Thus, the maximum power used by the motor is 48 kW.
Net gravitational force at the center of a square is found to be \( F_1 \) when four particles having masses \( M, 2M, 3M \) and \( 4M \) are placed at the four corners of the square as shown in figure, and it is \( F_2 \) when the positions of \( 3M \) and \( 4M \) are interchanged. The ratio \( \dfrac{F_1}{F_2} = \dfrac{\alpha}{\sqrt{5}} \). The value of \( \alpha \) is 

Method used for separation of mixture of products (B and C) obtained in the following reaction is: 
Which of the following best represents the temperature versus heat supplied graph for water, in the range of \(-20^\circ\text{C}\) to \(120^\circ\text{C}\)? 