Let \( P(x, y) \)
\[ \frac{(x - 2)^2 + (y - 1)^2}{(x - 1)^2 + (y - 3)^2} = \frac{25}{16} \]
Expanding and simplifying:
\[ 9x^2 + 9y^2 + 14x - 118y + 170 = 0 \]
From the equation:
\[ a^2 + 2b + 3c + 4d + e = 81 + 18 + 0 + 56 - 118 \]
Calculating:
\[ = 155 - 118 \]
\[ = 37 \]
Let \( y = f(x) \) be the solution of the differential equation
\[ \frac{dy}{dx} + 3y \tan^2 x + 3y = \sec^2 x \]
such that \( f(0) = \frac{e^3}{3} + 1 \), then \( f\left( \frac{\pi}{4} \right) \) is equal to:
Find the IUPAC name of the compound.
If \( \lim_{x \to 0} \left( \frac{\tan x}{x} \right)^{\frac{1}{x^2}} = p \), then \( 96 \ln p \) is: 32