Let \( P(x, y) \)
\[ \frac{(x - 2)^2 + (y - 1)^2}{(x - 1)^2 + (y - 3)^2} = \frac{25}{16} \]
Expanding and simplifying:
\[ 9x^2 + 9y^2 + 14x - 118y + 170 = 0 \]
From the equation:
\[ a^2 + 2b + 3c + 4d + e = 81 + 18 + 0 + 56 - 118 \]
Calculating:
\[ = 155 - 118 \]
\[ = 37 \]
Let \( F_1, F_2 \) \(\text{ be the foci of the hyperbola}\) \[ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1, a > 0, \, b > 0, \] and let \( O \) be the origin. Let \( M \) be an arbitrary point on curve \( C \) and above the X-axis and \( H \) be a point on \( MF_1 \) such that \( MF_2 \perp F_1 F_2, \, M F_1 \perp OH, \, |OH| = \lambda |O F_2| \) with \( \lambda \in (2/5, 3/5) \), then the range of the eccentricity \( e \) is in:
Let the line $\frac{x}{4} + \frac{y}{2} = 1$ meet the x-axis and y-axis at A and B, respectively. M is the midpoint of side AB, and M' is the image of the point M across the line $x + y = 1$. Let the point P lie on the line $x + y = 1$ such that $\Delta ABP$ is an isosceles triangle with $AP = BP$. Then the distance between M' and P is:
For $ \alpha, \beta, \gamma \in \mathbb{R} $, if $$ \lim_{x \to 0} \frac{x^2 \sin \alpha x + (\gamma - 1)e^{x^2} - 3}{\sin 2x - \beta x} = 3, $$ then $ \beta + \gamma - \alpha $ is equal to:
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is: