Step 1: Identifying the Locus Equation
The given locus equation of the centroid is:
\[
9x^2 + 9y^2 - 6x = 49.
\]
Rearrange this into the standard form of a circle:
\[
9(x^2 - \frac{2}{3}x) + 9y^2 = 49.
\]
Completing the square for \( x \):
\[
9 \left( x^2 - \frac{2}{3}x + \left(\frac{1}{3}\right)^2 \right) - 9 \left(\frac{1}{3}\right)^2 + 9y^2 = 49.
\]
\[
9 \left( (x - \frac{1}{3})^2 \right) - \frac{9}{9} + 9y^2 = 49.
\]
\[
9 (x - \frac{1}{3})^2 + 9y^2 = 50.
\]
Dividing by 9,
\[
(x - \frac{1}{3})^2 + y^2 = \frac{50}{9}.
\]
Thus, the circle has center \( (\frac{1}{3}, 0) \) and radius \( \frac{\sqrt{50}}{3} \).
Step 2: Finding the Area of the Triangle
The given equation of the line is:
\[
\frac{x}{a} + \frac{y}{b} = 1.
\]
This line intersects the x-axis at \( (a, 0) \) and the y-axis at \( (0, b) \).
The area of the triangle formed by this line with the coordinate axes is:
\[
\frac{1}{2} \times a \times b.
\]
From the given equation,
\[
\frac{x}{\frac{7}{3}} + \frac{y}{\frac{7}{3}} = 1.
\]
Comparing,
\[
a = \frac{7}{3}, \quad b = \frac{7}{3}.
\]
Thus, the area of the triangle is:
\[
\frac{1}{2} \times \frac{7}{3} \times \frac{7}{3} = \frac{7}{2}.
\]
Step 3: Conclusion
Thus, the final answer is:
\[
\boxed{\frac{7}{2}}.
\]
\bigskip