To find the maximum or minimum value of a function, take the derivative and set it to zero. Remember the logarithmic differentiation technique for functions of the form f(x)g(x).
Let:
\( y = \left(\frac{\sqrt{3}e}{2\sin x}\right)^{\sin^2 x} \)
Take the natural logarithm on both sides:
\( \ln y = \sin^2 x \cdot \ln\left(\frac{\sqrt{3}e}{2\sin x}\right) \)
Differentiate both sides with respect to \( x \):
\( \frac{1}{y} \cdot \frac{dy}{dx} = \ln\left(\frac{\sqrt{3}e}{2\sin x}\right) \cdot 2\sin x \cos x + \sin^2 x \cdot \frac{2\sin x \cdot \sqrt{3}e - \sqrt{3}e \cdot 2\cos x}{2 \cdot \sqrt{3}e} \)
Simplify the derivative:
\( \frac{dy}{dx} = y \cdot \left[\ln\left(\frac{\sqrt{3}e}{2\sin x}\right) \cdot 2\sin x \cos x - \sin x \cos x\right] \)
For local maxima or minima, set \( \frac{dy}{dx} = 0 \):
\( \ln\left(\frac{\sqrt{3}e}{2\sin x}\right) \cdot 2\sin x \cos x - \sin x \cos x = 0 \)
Factorize:
\( \sin x \cos x \cdot \left[2\ln\left(\frac{\sqrt{3}e}{2\sin x}\right) - 1\right] = 0 \)
For non-zero solutions:
\( \ln\left(\frac{\sqrt{3}e}{2\sin x}\right) = \frac{1}{2} \)
\( \frac{3e}{4\sin^2 x} = e^{1} \Rightarrow \frac{3e}{4\sin^2 x} = e \Rightarrow \sin^2 x = \frac{3}{4} \)
Hence:
\( \sin x = \frac{\sqrt{3}}{2} \quad \text{(as } x \in (0, \pi/2) \text{)} \)
The corresponding local maximum value of \( y \) is:
\( y = \left(\frac{\sqrt{3}e}{\sqrt{3}}\right)^{3/4} \)
Equating powers:
\( \left(\frac{k}{e}\right)^{8} = e^{3/8} = \frac{k}{e} \)
Using the given conditions:
\( k^8 = e^{11} \)
\( \left(\frac{k}{e}\right)^8 + \frac{k^8}{e^5} + k^8 = e^3 + e^6 + e^{11} \)
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).

Match the LIST-I with LIST-II for an isothermal process of an ideal gas system. 
Choose the correct answer from the options given below:
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?
