To find the maximum or minimum value of a function, take the derivative and set it to zero. Remember the logarithmic differentiation technique for functions of the form f(x)g(x).
Let:
\( y = \left(\frac{\sqrt{3}e}{2\sin x}\right)^{\sin^2 x} \)
Take the natural logarithm on both sides:
\( \ln y = \sin^2 x \cdot \ln\left(\frac{\sqrt{3}e}{2\sin x}\right) \)
Differentiate both sides with respect to \( x \):
\( \frac{1}{y} \cdot \frac{dy}{dx} = \ln\left(\frac{\sqrt{3}e}{2\sin x}\right) \cdot 2\sin x \cos x + \sin^2 x \cdot \frac{2\sin x \cdot \sqrt{3}e - \sqrt{3}e \cdot 2\cos x}{2 \cdot \sqrt{3}e} \)
Simplify the derivative:
\( \frac{dy}{dx} = y \cdot \left[\ln\left(\frac{\sqrt{3}e}{2\sin x}\right) \cdot 2\sin x \cos x - \sin x \cos x\right] \)
For local maxima or minima, set \( \frac{dy}{dx} = 0 \):
\( \ln\left(\frac{\sqrt{3}e}{2\sin x}\right) \cdot 2\sin x \cos x - \sin x \cos x = 0 \)
Factorize:
\( \sin x \cos x \cdot \left[2\ln\left(\frac{\sqrt{3}e}{2\sin x}\right) - 1\right] = 0 \)
For non-zero solutions:
\( \ln\left(\frac{\sqrt{3}e}{2\sin x}\right) = \frac{1}{2} \)
\( \frac{3e}{4\sin^2 x} = e^{1} \Rightarrow \frac{3e}{4\sin^2 x} = e \Rightarrow \sin^2 x = \frac{3}{4} \)
Hence:
\( \sin x = \frac{\sqrt{3}}{2} \quad \text{(as } x \in (0, \pi/2) \text{)} \)
The corresponding local maximum value of \( y \) is:
\( y = \left(\frac{\sqrt{3}e}{\sqrt{3}}\right)^{3/4} \)
Equating powers:
\( \left(\frac{k}{e}\right)^{8} = e^{3/8} = \frac{k}{e} \)
Using the given conditions:
\( k^8 = e^{11} \)
\( \left(\frac{k}{e}\right)^8 + \frac{k^8}{e^5} + k^8 = e^3 + e^6 + e^{11} \)
The value of current \( I \) in the electrical circuit as given below, when the potential at \( A \) is equal to the potential at \( B \), will be _____ A.
Two light beams fall on a transparent material block at point 1 and 2 with angle \( \theta_1 \) and \( \theta_2 \), respectively, as shown in the figure. After refraction, the beams intersect at point 3 which is exactly on the interface at the other end of the block. Given: the distance between 1 and 2, \( d = \frac{4}{3} \) cm and \( \theta_1 = \theta_2 = \cos^{-1} \left( \frac{n_2}{2n_1} \right) \), where \( n_2 \) is the refractive index of the block and \( n_1 \) is the refractive index of the outside medium, then the thickness of the block is …….. cm.