To find the maximum or minimum value of a function, take the derivative and set it to zero. Remember the logarithmic differentiation technique for functions of the form f(x)g(x).
Let:
\( y = \left(\frac{\sqrt{3}e}{2\sin x}\right)^{\sin^2 x} \)
Take the natural logarithm on both sides:
\( \ln y = \sin^2 x \cdot \ln\left(\frac{\sqrt{3}e}{2\sin x}\right) \)
Differentiate both sides with respect to \( x \):
\( \frac{1}{y} \cdot \frac{dy}{dx} = \ln\left(\frac{\sqrt{3}e}{2\sin x}\right) \cdot 2\sin x \cos x + \sin^2 x \cdot \frac{2\sin x \cdot \sqrt{3}e - \sqrt{3}e \cdot 2\cos x}{2 \cdot \sqrt{3}e} \)
Simplify the derivative:
\( \frac{dy}{dx} = y \cdot \left[\ln\left(\frac{\sqrt{3}e}{2\sin x}\right) \cdot 2\sin x \cos x - \sin x \cos x\right] \)
For local maxima or minima, set \( \frac{dy}{dx} = 0 \):
\( \ln\left(\frac{\sqrt{3}e}{2\sin x}\right) \cdot 2\sin x \cos x - \sin x \cos x = 0 \)
Factorize:
\( \sin x \cos x \cdot \left[2\ln\left(\frac{\sqrt{3}e}{2\sin x}\right) - 1\right] = 0 \)
For non-zero solutions:
\( \ln\left(\frac{\sqrt{3}e}{2\sin x}\right) = \frac{1}{2} \)
\( \frac{3e}{4\sin^2 x} = e^{1} \Rightarrow \frac{3e}{4\sin^2 x} = e \Rightarrow \sin^2 x = \frac{3}{4} \)
Hence:
\( \sin x = \frac{\sqrt{3}}{2} \quad \text{(as } x \in (0, \pi/2) \text{)} \)
The corresponding local maximum value of \( y \) is:
\( y = \left(\frac{\sqrt{3}e}{\sqrt{3}}\right)^{3/4} \)
Equating powers:
\( \left(\frac{k}{e}\right)^{8} = e^{3/8} = \frac{k}{e} \)
Using the given conditions:
\( k^8 = e^{11} \)
\( \left(\frac{k}{e}\right)^8 + \frac{k^8}{e^5} + k^8 = e^3 + e^6 + e^{11} \)
For \( n \in \mathbb{N} \), the largest positive integer that divides \( 81^n + 20n - 1 \) is \( k \). If \( S \) is the sum of all positive divisors of \( k \), then find \( S - k \).