If the initial pressure of a gas is 0.03 atm, the mass of the gas adsorbed per gram of the adsorbent is ______ × 10–2 g.
The mass of the gas adsorbed per gram can be calculated by the graph and by the value of x/m
List-I (Sol) | List-II (Method of preparation) |
---|---|
A) \( \text{As}_2\text{S}_3 \) | I) Bredig's arc method |
B) \( \text{Au} \) | II) Oxidation |
C) \( \text{S} \) | III) Hydrolysis |
D) \( \text{Fe(OH)}_3 \) | IV) Double decomposition |
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).
Let \( T_r \) be the \( r^{\text{th}} \) term of an A.P. If for some \( m \), \( T_m = \dfrac{1}{25} \), \( T_{25} = \dfrac{1}{20} \), and \( \displaystyle\sum_{r=1}^{25} T_r = 13 \), then \( 5m \displaystyle\sum_{r=m}^{2m} T_r \) is equal to: