\( \frac{8}{5} \)
Step 1: Harmonic Conjugate Formula
The harmonic conjugate \( Q(\alpha, \beta, \gamma) \) of \( P(2,3,4) \) with respect to the line segment joining \( A(3,-2,2) \) and \( B(6,-17,-4) \) satisfies the section formula in harmonic division: \[ Q = \frac{mA - nB}{m - n}, \] where \( P \) divides \( AB \) internally in the ratio \( m:n \) and \( Q \) divides \( AB \) externally in the same ratio.
Step 2: Find the internal ratio of division
Using the section formula in 3D, we set: \[ P = \left( \frac{m(6) + n(3)}{m+n}, \frac{m(-17) + n(-2)}{m+n}, \frac{m(-4) + n(2)}{m+n} \right). \] Equating coordinates with \( P(2,3,4) \): \[ \frac{6m + 3n}{m+n} = 2, \quad \frac{-17m -2n}{m+n} = 3, \quad \frac{-4m + 2n}{m+n} = 4. \] Solving for \( m:n \): From the first equation: \[ 6m + 3n = 2(m+n). \] \[ 6m + 3n = 2m + 2n. \] \[ 4m + n = 0. \] \[ n = -4m. \] Substituting into the second equation: \[ -17m -2(-4m) = 3(m - 4m). \] \[ -17m + 8m = 3m - 12m. \] \[ -9m = -9m. \] So, \( m:n = 1:-4 \).
Step 3: Find \( Q(\alpha, \beta, \gamma) \)
Using the external section formula: \[ Q = \frac{mB - nA}{m - n}. \] \[ \alpha = \frac{1(6) - (-4)(3)}{1 + 4} = \frac{6 + 12}{5} = \frac{18}{5}. \] \[ \beta = \frac{1(-17) - (-4)(-2)}{1 + 4} = \frac{-17 - 8}{5} = \frac{-25}{5} = -5. \] \[ \gamma = \frac{1(-4) - (-4)(2)}{1 + 4} = \frac{-4 + 8}{5} = \frac{4}{5}. \]
Step 4: Compute \( \alpha + \beta + \gamma \)
\[ \alpha + \beta + \gamma = \frac{18}{5} + (-5) + \frac{4}{5}. \] \[ = \frac{18}{5} - \frac{25}{5} + \frac{4}{5}. \] \[ = \frac{18 - 25 + 4}{5} = \frac{-3}{5}. \]
Step 5: Conclusion
Thus, the correct answer is: \[ \mathbf{-\frac{3}{5}}. \]
In the given figure, the numbers associated with the rectangle, triangle, and ellipse are 1, 2, and 3, respectively. Which one among the given options is the most appropriate combination of \( P \), \( Q \), and \( R \)?

The center of a circle $ C $ is at the center of the ellipse $ E: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 $, where $ a>b $. Let $ C $ pass through the foci $ F_1 $ and $ F_2 $ of $ E $ such that the circle $ C $ and the ellipse $ E $ intersect at four points. Let $ P $ be one of these four points. If the area of the triangle $ PF_1F_2 $ is 30 and the length of the major axis of $ E $ is 17, then the distance between the foci of $ E $ is:
In a messenger RNA molecule, untranslated regions (UTRs) are present at:
I. 5' end before start codon
II. 3' end after stop codon
III. 3' end before stop codon
IV. 5' end after start codon