Step 1 : Let
\[y = \left( \frac{1}{x} \right)^{2x}\]
Taking the natural logarithm on both sides:
\[\ln y = 2x \ln \left( \frac{1}{x} \right)\]
Simplify:
\[\ln y = -2x \ln x\]
Step 2: Differentiating with respect to \(x\)
Differentiating both sides with respect to \(x\):
\[\frac{1}{y} \frac{dy}{dx} = -2(1 + \ln x)\]
Multiply through by \(y\):
\[\frac{dy}{dx} = y \cdot (-2)(1 + \ln x)\]
Step 3: Behavior of the function
For \(x > \frac{1}{e}\), the function \(f^n\) is decreasing.
Thus, we can establish the following inequalities:
\[e < \pi\]
\[\left( \frac{1}{e} \right)^{2e} > \left( \frac{1}{\pi} \right)^{2\pi}\]
\[e^\pi > \pi^e\]
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: