Evaluating the limit To check continuity at \( x = 0 \): \[ \lim_{x \to 0} \frac{\sqrt{1+x} - 1}{x}. \] Multiplying numerator and denominator by the conjugate: \[ \lim_{x \to 0} \frac{(\sqrt{1+x} - 1)(\sqrt{1+x} + 1)}{x(\sqrt{1+x} + 1)}. \] Since \( (\sqrt{1+x} - 1)(\sqrt{1+x} + 1) = 1+x -1 = x \), we simplify: \[ \lim_{x \to 0} \frac{x}{x(\sqrt{1+x} + 1)} = \lim_{x \to 0} \frac{1}{\sqrt{1+x} + 1}. \] Substituting \( x = 0 \): \[ \frac{1}{2} = f(0). \]
For \( \alpha, \beta, \gamma \in \mathbb{R} \), if \[ \lim_{x \to 0} \frac{x^2 \sin(\alpha x) + (\gamma - 1)e^{x^2}}{\sin(2x - \beta x)} = 3, \] then \( \beta + \gamma - \alpha \) is equal to:
If $\lim_{x \to 1} \frac{(x-1)(6+\lambda \cos(x-1)) + \mu \sin(1-x)}{(x-1)^3} = -1$, where $\lambda, \mu \in \mathbb{R}$, then $\lambda + \mu$ is equal to