\(\sqrt{26}\)
\(2\sqrt{2}\)
\(\sqrt{14}\)
\(\left(-2, \frac{7}{2}, \frac{3}{2}\right)\) satisfies the plane \(P : 2x + my + nz = 4\)
\(-4 + \frac{7m}{2} + \frac{3n}{2} = 4\)
\(⇒7m+3n=16⋯(i)\)
Line joining \(A(–1, 4, 3)\) and \(\left(-2, \frac{7}{2}, \frac{3}{2}\right)\) is perpendicular to \(P : 2x + my + nz = 4\)
\(\frac{1}{2} = \frac{\frac{1}{2}}{m} = \frac{\frac{3}{2}}{n}\)
\(⇒m=1\& n=3\)
Plane \(P : 2x + y + 3z = 4\)
Distance of P from \(A(–1, 4, 3)\) parallel to the line
\(\frac{x+1}{3}=\frac{y−4}{−1}=\frac{z−3}{−4}:L\)
for point of intersection of P&L
\(2(3r – 1) + (–r + 4) + 3(–4r + 3) = 4 ⇒r = 1\)
Point of intersection :\( (2, 3, –1)\)
Required distance
\(\sqrt{3^2 + 1^2 + 4^2}\)
\(=\sqrt{26}\)
So, the correct option is (B): \(\sqrt{26}\)
If the origin is shifted to a point \( P \) by the translation of axes to remove the \( y \)-term from the equation \( x^2 - y^2 + 2y - 1 = 0 \), then the transformed equation of it is:
Find the equivalent capacitance between A and B, where \( C = 16 \, \mu F \).
If the equation of the parabola with vertex \( \left( \frac{3}{2}, 3 \right) \) and the directrix \( x + 2y = 0 \) is \[ ax^2 + b y^2 - cxy - 30x - 60y + 225 = 0, \text{ then } \alpha + \beta + \gamma \text{ is equal to:} \]
The length of the perpendicular drawn from the point to the line is the distance of a point from a line. The shortest difference between a point and a line is the distance between them. To move a point on the line it measures the minimum distance or length required.
The following steps can be used to calculate the distance between two points using the given coordinates:
Note: If the two points are in a 3D plane, we can use the 3D distance formula, d = √(m2 - m1)2 + (n2 - n1)2 + (o2 - o1)2.
Read More: Distance Formula