Step 1: Recall the general form of an A.P.
Let the first term be \(a = p\), the common difference be \(d\), and the last term be \(r\). Thus, \[ \text{Second term} = a + d = q \] \[ \Rightarrow d = q - p \] Step 2: Use the nth term formula.
The nth term of an A.P. is given by \[ t_n = a + (n - 1)d \] Since the last term \(r = a + (n - 1)d\), \[ r = p + (n - 1)(q - p) \] \[ \Rightarrow n - 1 = \frac{r - p}{q - p} \] \[ \Rightarrow n = \frac{r - p}{q - p} + 1 = \frac{r - p + q - p}{q - p} = \frac{q + r - 2p}{q - p} \] Step 3: Recall the sum of \(n\) terms of an A.P.
\[ S_n = \frac{n}{2}(a + l) \] where \(a = p\) and \(l = r\).
Step 4: Substitute the values.
\[ S = \frac{1}{2} \times \frac{(q + r - 2p)}{(q - p)} \times (p + r) \] Step 5: Simplify.
\[ S = (q + r - 2p) \times \frac{(p + r)}{2(q - p)} \] Step 6: Conclusion.
Hence proved that \[ \boxed{S = (q + r - 2p) \times \frac{(p + r)}{2(q - p)}} \]
Consider an A.P. $a_1,a_2,\ldots,a_n$; $a_1>0$. If $a_2-a_1=-\dfrac{3}{4}$, $a_n=\dfrac{1}{4}a_1$, and \[ \sum_{i=1}^{n} a_i=\frac{525}{2}, \] then $\sum_{i=1}^{17} a_i$ is equal to
In the following figure \(\triangle\) ABC, B-D-C and BD = 7, BC = 20, then find \(\frac{A(\triangle ABD)}{A(\triangle ABC)}\). 
The radius of a circle with centre 'P' is 10 cm. If chord AB of the circle subtends a right angle at P, find area of minor sector by using the following activity. (\(\pi = 3.14\)) 
Activity :
r = 10 cm, \(\theta\) = 90\(^\circ\), \(\pi\) = 3.14.
A(P-AXB) = \(\frac{\theta}{360} \times \boxed{\phantom{\pi r^2}}\) = \(\frac{\boxed{\phantom{90}}}{360} \times 3.14 \times 10^2\) = \(\frac{1}{4} \times \boxed{\phantom{314}}\) <br>
A(P-AXB) = \(\boxed{\phantom{78.5}}\) sq. cm.