Step 1: Understanding the Concept:
We first need to construct \(\triangle\)ABC from its given side lengths. Then, we construct \(\triangle\)PQR, which is similar to \(\triangle\)ABC, using the given ratio of corresponding sides. Since the ratio is 2:3, \(\triangle\)PQR will be larger than \(\triangle\)ABC. The scale factor for enlargement is \(\frac{3}{2}\).
Step 2: Key Formula or Approach:
The ratio of corresponding sides is given by: \[ \frac{AB}{PQ} = \frac{BC}{QR} = \frac{AC}{PR} = \frac{2}{3} \] We can calculate the side lengths of \(\triangle\)PQR: \[\begin{array}{rl} \bullet & \text{\(PQ = \frac{3}{2} \times AB = \frac{3}{2} \times 3.6 = 5.4\) cm} \\ \bullet & \text{\(QR = \frac{3}{2} \times BC = \frac{3}{2} \times 4 = 6\) cm} \\ \bullet & \text{\(PR = \frac{3}{2} \times AC = \frac{3}{2} \times 4.2 = 6.3\) cm} \\ \end{array}\] We can construct both triangles separately, or use a combined construction method. The combined method is more elegant.
Step 3: Detailed Explanation (Construction Steps):
Part I: Constructing \(\triangle\)ABC \[\begin{array}{rl} 1. & \text{Draw a line segment BC of length 4 cm.} \\ 2. & \text{With B as the centre and radius 3.6 cm, draw an arc.} \\ 3. & \text{With C as the centre and radius 4.2 cm, draw another arc intersecting the first arc at point A.} \\ 4. & \text{Join AB and AC. \(\triangle\)ABC is the required triangle.} \\ \end{array}\]
Part II: Constructing \(\triangle\)PQR (similar to \(\triangle\)ABC) \[\begin{array}{rl} 1. & \text{From point B of \(\triangle\)ABC, draw a ray BX making an acute angle with the side BC, on the side opposite to vertex A.} \\ 2. & \text{On ray BX, mark 3 points (the larger number in the ratio 2:3) \(B_1, B_2, B_3\) such that \(BB_1 = B_1B_2 = B_2B_3\).} \\ 3. & \text{Join \(B_2\) (the smaller number in the ratio) to point C.} \\ 4. & \text{From point \(B_3\), draw a line parallel to \(B_2C\), which intersects the extended line segment BC at point R.} \\ 5. & \text{From point R, draw a line parallel to side AC, which intersects the extended line segment BA at point P.} \\ 6. & \text{\(\triangle\)PBR is the required triangle \(\triangle\)PQR (with B corresponding to Q).} \\ \end{array}\] This construction creates \(\triangle\)PBR which is similar to \(\triangle\)ABC and its sides are \(\frac{3}{2}\) times the sides of \(\triangle\)ABC.
Step 4: Final Answer:
The triangles \(\triangle\)ABC and \(\triangle\)PQR are constructed as per the steps above.
рдирд┐рдореНрдирд▓рд┐рдЦрд┐рдд рдореБрд╣рд╛рд╡рд░реЛрдВ рдореЗрдВ рд╕реЗ рдХрд┐рд╕реА рдПрдХ рдореБрд╣рд╛рд╡рд░реЗ рдХрд╛ рдЕрд░реНрде рд▓рд┐рдЦрдХрд░ рд╡рд╛рдХреНрдп рдореЗрдВ рдкреНрд░рдпреЛрдЧ рдХреАрдЬрд┐рдП :
(i) рдореБрдБрд╣ рд▓рд╛рд▓ рд╣реЛрдирд╛
(ii) рдЯрд╛рдБрдЧ рдЕрдбрд╝рд╛рдирд╛
рдЕрдерд╡рд╛
рдЕрдзреЛрд░реЗрдЦрд╛рдВрдХрд┐рдд рд╡рд╛рдХреНрдпрд╛рдВрд╢ рдХреЗ рд▓рд┐рдП рдХреЛрд╖реНрдардХ рдореЗрдВ рджрд┐рдП рдореБрд╣рд╛рд╡рд░реЛрдВ рдореЗрдВ рд╕реЗ рдЙрдЪрд┐рдд рдореБрд╣рд╛рд╡рд░реЗ рдХрд╛ рдЪрдпрди рдХрд░рдХреЗ рд╡рд╛рдХреНрдп рдлрд┐рд░ рд╕реЗ рд▓рд┐рдЦрд┐рдП :
(рддрд┐рд▓рдорд┐рд▓рд╛ рдЬрд╛рдирд╛, рдХрд╛рдБрдк рдЙрдардирд╛)
рдкрдВрдбрд┐рдд рдмреБрджреНрдзрд┐рд░рд╛рдо рдХрд╛рдХреА рдХреЛ рджреЗрдЦрддреЗ рд╣реА \underline{рдХреНрд░реЛрдз рдореЗрдВ рдЖ рдЧрдП}ред
Information Transfer: Answer the following question based on the given tree-diagram.
рдирд┐рдореНрдирд▓рд┐рдЦрд┐рдд рдкрдард┐рдд рдЧрджреНрдпрд╛рдВрд╢ рдкрдврд╝рдХрд░ рджреА рдЧрдИ рд╕реВрдЪрдирд╛рдУрдВ рдХреЗ рдЕрдиреБрд╕рд╛рд░ рдХреГрддрд┐рдпрд╛рдБ рдХреАрдЬрд┐рдП :
рдЖрдБрдЦ рдЦреБрд▓реА рддреЛ рдореИрдВрдиреЗ рдЕрдкрдиреЗ-рдЖрдкрдХреЛ рдПрдХ рдмрд┐рд╕реНрддрд░ рдкрд░ рдкрд╛рдпрд╛ред рдЗрд░реНрдж-рдЧрд┐рд░реНрдж рдХреБрдЫ рдкрд░рд┐рдЪрд┐рдд-рдЕрдкрд░рд┐рдЪрд┐рдд рдЪреЗрд╣рд░реЗ рдЦрдбрд╝реЗ рдереЗред рдЖрдБрдЦ рдЦреБрд▓рддреЗ рд╣реА рдЙрдирдХреЗ рдЪреЗрд╣рд░реЛрдВ рдкрд░ рдЙрддреНрд╕реБрдХрддрд╛ рдХреА рд▓рд╣рд░ рджреМрдбрд╝ рдЧрдИред рдореИрдВрдиреЗ рдХрд░рд╛рд╣рддреЗ рд╣реБрдП рдкреВрдЫрд╛ "рдореИрдВ рдХрд╣рд╛рдБ рд╣реВрдБ ?"
"рдЖрдк рд╕рд╛рд░реНрд╡рдЬрдирд┐рдХ рдЕрд╕реНрдкрддрд╛рд▓ рдХреЗ рдкреНрд░рд╛рдЗрд╡реЗрдЯ рд╡рд╛рд░реНрдб рдореЗрдВ рд╣реИрдВред рдЖрдкрдХрд╛ рдРрдХреНрд╕рд┐рдбреЗрдВрдЯ рд╣реЛ рдЧрдпрд╛ рдерд╛ред рд╕рд┐рд░реНрдл рдкреИрд░ рдХрд╛ рдлреНрд░реИрдХреНрдЪрд░ рд╣реБрдЖ рд╣реИред рдЕрдм рдШрдмрд░рд╛рдиреЗ рдХреА рдХреЛрдИ рдмрд╛рдд рдирд╣реАрдВред" рдПрдХ рдЪреЗрд╣рд░рд╛ рдЗрддрдиреА рддреЗрдЬреА рд╕реЗ рдЬрд╡рд╛рдм рджреЗрддрд╛ рд╣реИ, рд▓рдЧрддрд╛ рд╣реИ рдореЗрд░реЗ рд╣реЛрд╢ рдЖрдиреЗ рддрдХ рд╡рд╣ рдЗрд╕рд▓рд┐рдП рд░реБрдХрд╛ рд░рд╣рд╛ред рдЕрдм рдореИрдВ рдЕрдкрдиреА рдЯрд╛рдБрдЧреЛрдВ рдХреА рдУрд░ рджреЗрдЦрддрд╛ рд╣реВрдБред рдореЗрд░реА рдПрдХ рдЯрд╛рдБрдЧ рдЕрдкрдиреА рдЬрдЧрд╣ рдкрд░ рд╕рд╣реА-рд╕рд▓рд╛рдордд рдереА рдФрд░ рджреВрд╕рд░реА рдЯрд╛рдБрдЧ рд░реЗрдд рдХреА рдереИрд▓реА рдХреЗ рд╕рд╣рд╛рд░реЗ рдПрдХ рд╕реНрдЯреИрдВрдб рдкрд░ рд▓рдЯрдХ рд░рд╣реА рдереАред рдореЗрд░реЗ рджрд┐рдорд╛рдЧ рдореЗрдВ рдПрдХ рдирдпреЗ рдореБрд╣рд╛рд╡рд░реЗ рдХрд╛ рдЬрдиреНрдо рд╣реБрдЖред 'рдЯрд╛рдБрдЧ рдХрд╛ рдЯреВрдЯрдирд╛' рдпрд╛рдиреА рд╕рд╛рд░реНрд╡рдЬрдирд┐рдХ рдЕрд╕реНрдкрддрд╛рд▓ рдореЗрдВ рдХреБрдЫ рджрд┐рди рд░рд╣рдирд╛ред рд╕рд╛рд░реНрд╡рдЬрдирд┐рдХ рдЕрд╕реНрдкрддрд╛рд▓ рдХрд╛ рдЦрдпрд╛рд▓ рдЖрддреЗ рд╣реА рдореИрдВ рдХрд╛рдБрдк рдЙрдард╛ред рдЕрд╕реНрдкрддрд╛рд▓ рд╡реИрд╕реЗ рд╣реА рдПрдХ рдЦрддрд░рдирд╛рдХ рд╢рдмреНрдж рд╣реЛрддрд╛ рд╣реИ, рдлрд┐рд░ рдпрджрд┐ рдЙрд╕рдХреЗ рд╕рд╛рде рд╕рд╛рд░реНрд╡рдЬрдирд┐рдХ рд╢рдмреНрдж рдЪрд┐рдкрдХрд╛ рд╣реЛ рддреЛ рд╕рдордЭреЛ рдЖрддреНрдорд╛ рд╕реЗ рдкрд░рдорд╛рддреНрдорд╛ рдХреЗ рдорд┐рд▓рди рд╣реЛрдиреЗ рдХрд╛ рд╕рдордп рдЖ рдЧрдпрд╛ред рдЕрдм рдореБрдЭреЗ рдпреВрдБ рд▓рдЧрд╛ рдХрд┐ рдореЗрд░реА рдЯрд╛рдБрдЧ рдЯреВрдЯрдирд╛ рдорд╛рддреНрд░ рдПрдХ рдШрдЯрдирд╛ рд╣реИ рдФрд░ рд╕рд╛рд░реНрд╡рдЬрдирд┐рдХ рдЕрд╕реНрдкрддрд╛рд▓ рдореЗрдВ рднрд░рддреА рд╣реЛрдирд╛ рджреБрд░реНрдШрдЯрдирд╛ред
(4) рд╕рд╛рд░реНрд╡рдЬрдирд┐рдХ рд░реБрдЧреНрдгрд╛рд▓рдпреЛрдВ рдХреА рд╕реНрдерд┐рддрд┐ рдХреЗ рдмрд╛рд░реЗ рдореЗрдВ 25 рд╕реЗ 30 рд╢рдмреНрджреЛрдВ рдореЗрдВ рдЕрдкрдиреЗ рд╡рд┐рдЪрд╛рд░ рд▓рд┐рдЦрд┐рдПред