\( \frac{x^2}{4} - \frac{y^2}{4} = 1 \)
Step 1: Find the coordinates of the extremities of the latus rectum
The latus rectum of an ellipse is given by the coordinates: \[ \left( \pm c, \frac{b^2}{a} \right), \] where \( c \) is the focal distance: \[ c = \sqrt{a^2 - b^2}. \] Thus, the coordinates of the extremities of the latus rectum with positive ordinate are: \[ \left( c, \frac{b^2}{a} \right) \quad \text{and} \quad \left( -c, \frac{b^2}{a} \right). \]
Step 2: Use the given parabola equation
The extremities satisfy the equation of the given parabola: \[ x^2 + 2ay - 4 = 0. \] Substituting \( x = c = \sqrt{a^2 - b^2} \) and \( y = \frac{b^2}{a} \): \[ (\sqrt{a^2 - b^2})^2 + 2a \left( \frac{b^2}{a} \right) - 4 = 0. \] \[ a^2 - b^2 + 2b^2 - 4 = 0. \] \[ a^2 + b^2 - 4 = 0. \] \[ a^2 + b^2 = 4. \]
Step 3: Conclusion
Thus, the points \( (a, b) \) satisfy: \[ x^2 + y^2 = 4. \] Thus, the correct answer is: \[ \mathbf{x^2 + y^2 = 4}. \]