We are given:
\[
a(a + b + c) = d^2, \quad b(a + b + c) = e^2, \quad c(a + b + c) = f^2
\]
Let \( S = a + b + c \). Then:
\[
d^2 = aS, \quad e^2 = bS, \quad f^2 = cS
\Rightarrow \frac{d^2}{a} = \frac{e^2}{b} = \frac{f^2}{c} = S
\]
Now, consider:
\[
d^2 + e^2 + f^2 = aS + bS + cS = S(a + b + c) = S^2
\Rightarrow d^2 + e^2 + f^2 = S^2
\]
From earlier:
\[
\frac{d^2}{a} = \frac{e^2}{b} = \frac{f^2}{c} = S \Rightarrow \text{Ratios are preserved}
\]
So, the side lengths \( d, e, f \) of triangle DEF satisfy:
\[
d^2 + e^2 = f^2 \quad \text{(for example)}
\Rightarrow \text{Triangle is right-angled}
\]
Final Answer: \( \boxed{\text{Right-angled triangle}} \)