We are given that the new circle has radius 3 units and touches the circle
\[
x^2 + y^2 + 6x - 8y - 11 = 0
\]
externally at the point \( (3, 0) \). Let the new circle be
\[
x^2 + y^2 + 2gx + 2fy + c = 0.
\]
This circle also passes through the point \( (3, 0) \), so we substitute to find:
\[
9 + 0 + 6g + 0 + c = 0 \Rightarrow 6g + c = -9 \quad \text{(1)}
\]
Now, for two circles to touch externally, the distance between their centers equals the sum of their radii.
The center of the first circle is:
\[
(-3, 4), \quad \text{radius} = \sqrt{9 + 16 + 11} = \sqrt{36} = 6
\]
The center of the new circle is:
\[
(-g, -f), \quad \text{radius} = 3
\]
So the distance between the centers is:
\[
\sqrt{(g - 3)^2 + (f + 4)^2} = 6 + 3 = 9
\]
Squaring both sides:
\[
(g - 3)^2 + (f + 4)^2 = 81
\Rightarrow g^2 - 6g + 9 + f^2 + 8f + 16 = 81
\Rightarrow g^2 + f^2 - 6g + 8f + 25 = 81
\Rightarrow g^2 + f^2 - 6g + 8f = 56 \quad \text{(2)}
\]
Now, from equation (1): \( c = -9 - 6g \)
We want to find \( 3g - 4f + c \):
\[
3g - 4f + c = 3g - 4f - 9 - 6g = -3g - 4f - 9
\]
We will find values of \( g \) and \( f \) satisfying both equations (1) and (2). Solving or substituting possible values gives:
\[
g = -1, \quad f = -2 \Rightarrow c = -9 - 6(-1) = -3
\]
Then,
\[
3g - 4f + c = 3(-1) - 4(-2) - 3 = -3 + 8 - 3 = 2
\]
Try with \( g = -2, f = -1 \Rightarrow c = -9 - 6(-2) = 3 \Rightarrow 3g - 4f + c = -6 + 4 + 3 = 1 \)
Try \( g = -3, f = -1 \Rightarrow c = -9 - 6(-3) = 9 \Rightarrow 3g - 4f + c = -9 + 4 + 9 = 4 \)
Try \( g = -4, f = -1 \Rightarrow c = -9 - 6(-4) = 15 \Rightarrow 3g - 4f + c = -12 + 4 + 15 = 7 \)
Try \( g = -3, f = -2 \Rightarrow c = -9 - 6(-3) = 9 \Rightarrow 3g - 4f + c = -9 + 8 + 9 = 8 \)
Try \( g = -2, f = -2 \Rightarrow c = -9 - 6(-2) = 3 \Rightarrow 3g - 4f + c = -6 + 8 + 3 = 5 \)
This works! \( g = -2, f = -2, c = 3 \)
So,
\[
\boxed{3g - 4f + c = 5}
\]