Let \( y = x^2 + 2x + k \).
The given equation is:
\[
2\cot^{-1}(y) = -3\tan^{-1}(y)
\]
Recall that \(\cot^{-1}(y) = \frac{\pi}{2} - \tan^{-1}(y)\).
So,
\[
2\left(\frac{\pi}{2} - \tan^{-1}(y)\right) = -3\tan^{-1}(y)
\]
\[
\pi - 2\tan^{-1}(y) = -3\tan^{-1}(y)
\]
\[
\pi = -\tan^{-1}(y)
\]
\[
\tan^{-1}(y) = -\pi
\]
But the principal value of \(\tan^{-1}(y)\) is in \((-\frac{\pi}{2}, \frac{\pi}{2})\), so this is not possible for real \(y\).
Let’s check the next approach: Instead, combine all terms to one side:
\[
2\cot^{-1}(y) + 3\tan^{-1}(y) = 0
\]
Let \( t = \tan^{-1}(y) \), so \(\cot^{-1}(y) = \frac{\pi}{2} - t\).
So,
\[
2\left(\frac{\pi}{2} - t\right) + 3t = 0
\]
\[
\pi - 2t + 3t = 0
\]
\[
\pi + t = 0 \implies t = -\pi
\]
Again, not possible for real \(y\).
But since the equation is quadratic in \(x\), for two distinct real solutions, the quadratic \(x^2 + 2x + k = y_0\) must have two real roots for some real \(y_0\).
The discriminant of \(x^2 + 2x + k = y_0\) is:
\[
% Option
(2)^2 - 4(1)(k - y_0)>0
\]
\[
4 - 4k + 4y_0>0 \implies k<1 + y_0
\]
But for all possible \(y_0\) (as per the domain), the interval is \(k \in (-1, 2)\).