Given function:
\( f(x) = \sin^{-1}\left(\frac{x - 1}{2x + 3}\right) \)
For \( f(x) \) to be defined, the following conditions must hold:
\( 2x + 3 \neq 0 \) and \( -1 \leq \frac{x - 1}{2x + 3} \leq 1 \)
⇒ \( \frac{x - 1 - (2x + 3)}{2x + 3} \leq 0 \leq \frac{x - 1 + (2x + 3)}{2x + 3} \)
⇒ \( \frac{-x - 4}{2x + 3} \leq 0 \leq \frac{3x + 2}{2x + 3} \)
Now, solving \( \frac{-x - 4}{2x + 3} \leq 0 \):
Critical points: \( x = -4, -\frac{3}{2} \)
Sign analysis gives: \( x \in (-\infty, -4] \cup \left(-\frac{3}{2}, \infty \right) \)
Similarly, for \( \frac{3x + 2}{2x + 3} \geq 0 \):
Critical points: \( x = -\frac{3}{2}, -\frac{2}{3} \)
Sign analysis gives: \( x \in (-\infty, -\frac{3}{2}) \cup \left[-\frac{2}{3}, \infty \right) \)
Taking the intersection of the two intervals, the domain is:
\( x \in (-\infty, -4] \cup \left(-\frac{2}{3}, \infty \right) \)
Thus, the range is:
\( R = \left(-4, -\frac{2}{3}\right] \)
Now, let \( \alpha = -4 \) and \( \beta = -\frac{2}{3} \)
Then, \( 12 \times (-4) \times \left(-\frac{2}{3}\right) = 32 \)
Hence, the final answer is:
\( 32 \)
Step 1: Conditions for the domain of \( f(x) \) The argument of \( \sin^{-1}(x) \), \( \frac{x-1}{2x+3} \), must satisfy two conditions:
Step 2: Solve \( \left| \frac{x-1}{2x+3} \right| \leq 1 \) Split the inequality into two cases:
1. For \( \frac{x-1}{2x+3} \geq -1 \):
\( x-1 \geq -(2x+3) \implies x-1 \geq -2x-3 \).
Simplify:
\( 3x \geq -2 \implies x \geq -\frac{2}{3} \).
2. For \( \frac{x-1}{2x+3} \leq 1 \):
\( x-1 \leq 2x+3 \implies -x \leq 4 \).
Simplify:
\( x \geq -4 \).
Thus, combining the results:
\( x \in [-4, -\frac{2}{3}] \) and exclude \( x = -\frac{3}{2} \).
Step 3: Identify the excluded interval To exclude values where \( |2x+3| \geq |x-1| \), note the critical points:
1. Solve \( |x-1| = |2x+3| \), which gives:
\( x = -4, \; x = -\frac{2}{3} \).
Using these results and the behavior of the function, the domain of \( f(x) \) is:
\( x \in (-\infty, -4] \cup \left(-\frac{2}{3}, \infty\right) \).
Step 4: Determine \( \alpha \) and \( \beta \) From the excluded interval \( \left(-\frac{3}{2}, -\frac{2}{3}\right) \):
\( \alpha = -4, \; \beta = -\frac{2}{3} \).
Step 5: Compute \( 12\alpha\beta \):
\( 12\alpha\beta = 12 \times (-4) \times \left(-\frac{2}{3}\right) \).
Simplify:
\( 12\alpha\beta = 12 \times 8/3 = 32 \).
Final Answer is Option (4): 32.
The value of $\int_{-1}^{1} \frac{(1 + \sqrt{|x| - x})e^x + (\sqrt{|x| - x})e^{-x}}{e^x + e^{-x}} \, dx$ is equal to
Considering the principal values of the inverse trigonometric functions, $\sin^{-1} \left( \frac{\sqrt{3}}{2} x + \frac{1}{2} \sqrt{1-x^2} \right)$, $-\frac{1}{2}<x<\frac{1}{\sqrt{2}}$, is equal to
A conducting bar moves on two conducting rails as shown in the figure. A constant magnetic field \( B \) exists into the page. The bar starts to move from the vertex at time \( t = 0 \) with a constant velocity. If the induced EMF is \( E \propto t^n \), then the value of \( n \) is _____. 