The problem involves finding the focal length of a curved mirror when the distance between an object and its two times magnified virtual image is given. Let us solve this step-by-step.
Hence, the focal length of the mirror is -10 cm. The correct answer is -10 cm, which matches with the provided correct answer option.
Given:
- Magnification, \( m = +2 \) (since the image is virtual and magnified).
- Distance between the object and the image, \( |u - v| = 15 \, \text{cm} \).
For a mirror, the magnification \( m \) is given by:
\(m = -\frac{v}{u}\)
Since \( m = +2 \):
\(-\frac{v}{u} = 2 \implies v = -2u\)
Step 1. Set up the distance equation:
\(|u - v| = 15\)
Substitute \( v = -2u \):
\( |u - (-2u)| = 15\)
\( |3u| = 15\)
\( u = 5 \, \text{cm}\)
Step 2. Calculate \( v \):
\(v = -2u = -2 \times 5 = -10 \, \text{cm}\)
Step 3. Use the mirror formula:
The mirror formula is: \( \frac{1}{f} = \frac{1}{v} + \frac{1}{u}\)
Substitute \( u = 5 \, \text{cm} \) and \( v = -10 \, \text{cm} \):
\(\frac{1}{f} = \frac{1}{-10} + \frac{1}{5} = -\frac{1}{10} + \frac{2}{10} = \frac{1}{10}\)
\(f = 10 \, \text{cm}\)
Thus, the focal length of the mirror is \(-10 \, \text{cm}\).
The Correct Answer is : -10 cm
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).

Match the LIST-I with LIST-II for an isothermal process of an ideal gas system. 
Choose the correct answer from the options given below: